Resource Type

States

731 Matching Results

Results open in a new window/tab.

Results from the Sudbury Neutrino Observatory Phase III (open access)

Results from the Sudbury Neutrino Observatory Phase III

The third and last phase of the Sudbury Neutrino Observatory (SNO) used a technique independent of previous methods, to measure the rate of neutral-current interactions in heavy water and determine precisely the total active {sup 8}B solar neutrino flux. The total flux obtained is 5.54{sub -0.31}{sup +0.33}(stat){sub -0.34}{sup +0.36}(syst) x 10{sup 6} cm{sup -2}s{sup -1}, in agreement with previous measurements and standard solar models. Results from a global analysis of solar and reactor neutrino give {Delta}m{sup 2} = 7.59{sub -0.21}{sup +0.19} x 10{sup -5} eV{sup 2} and {theta} = 34.4{sub -1.2}{sup +1.3} degrees with a reduced uncertainty on the mixing angle compared to previous phases.
Date: November 3, 2008
Creator: Collaboration, SNO & Prior, G.
System: The UNT Digital Library
Visible Light-Induced Electron Transfer from Di-mu-oxo Bridged Dinuclear Mn Complexes to Cr Centers in Silica Nanopores (open access)

Visible Light-Induced Electron Transfer from Di-mu-oxo Bridged Dinuclear Mn Complexes to Cr Centers in Silica Nanopores

The compound (bpy)2MnIII(mu-O)2MnIV(bpy)2, a structural model relevant for the photosynthetic water oxidation complex, was coupled to single CrVI charge-transfer chromophores in the channels of the nanoporous oxide AlMCM-41. Mn K-edge EXAFS spectroscopy confirmed that the di-mu-oxo dinuclear Mn core of the complex is unaffected when loaded into the nanoscale pores. Observation of the 16-line EPR signal characteristic of MnIII(mu-O)2MnIV demonstrates that the majority of the loaded complexes retained their nascent oxidation state in the presence or absence of CrVI centers. The FT-Raman spectrum upon visible light excitation of the CrVI-OII --> CrV-OI ligand-to-metal charge-transfer reveals electron transfer from MnIII(mu-O)2MnIV (Mn-O stretch at 700 cm-1) to CrVI, resulting in the formation of CrV and MnIV(mu-O)2MnIV (Mn-O stretch at 645 cm-1). All initial and final states are directly observed by FT-Raman or EPR spectroscopy, and the assignments corroborated by X-ray absorption spectroscopy measurements. The endoergic charge separation products (DELTA Eo = -0.6 V) remain after several minutes, which points to spatial separation of CrV and MnIV(mu-O)2MnIV as a consequence of hole (OI) hopping as a major contributing mechanism. This is the first observation of visible light-induced oxidation of a potential water oxidation complex by a metal charge-transfer pump in a nanoporous environment. …
Date: June 3, 2008
Creator: Frei, Heinz; Weare, Walter W.; Pushkar, Yulia; Yachandra, Vittal K. & Frei, Heinz
System: The UNT Digital Library
Defining and testing a granular continuum element (open access)

Defining and testing a granular continuum element

Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.
Date: December 3, 2007
Creator: Rycroft, Chris H.; Kamrin, Ken & Bazant, Martin Z.
System: The UNT Digital Library
Photonic MEMS for NIR in-situ (open access)

Photonic MEMS for NIR in-situ

We report on a novel sensing technique combining photonics and microelectromechanical systems (MEMS) for the detection and monitoring of gas emissions for critical environmental, medical, and industrial applications. We discuss how MEMS-tunable vertical-cavity surface-emitting lasers (VCSELs) can be exploited for in-situ detection and NIR spectroscopy of several gases, such as O{sub 2}, N{sub 2}O, CO{sub x}, CH{sub 4}, HF, HCl, etc., with estimated sensitivities between 0.1 and 20 ppm on footprints {approx}10{sup -3} mm{sup 3}. The VCSELs can be electrostatically tuned with a continuous wavelength shift up to 20 nm, allowing for unambiguous NIR signature determination. Selective concentration analysis in heterogeneous gas compositions is enabled, thus paving the way to an integrated optical platform for multiplexed gas identification by bandgap and device engineering. We will discuss here, in particular, our efforts on the development of a 760 nm AlGaAs based tunable VCSEL for O{sub 2} detection.
Date: July 3, 2007
Creator: Bond, T C; Cole, G D; Goddard, L L & Behymer, E
System: The UNT Digital Library
Large-scale quantum mechanical simulations of high-Z metals (open access)

Large-scale quantum mechanical simulations of high-Z metals

High-Z metals constitute a particular challenge for large-scale ab initio calculations, as they require high resolution due to the presence of strongly localized states and require many eigenstates to be computed due to the large number of electrons and need to accurately resolve the Fermi surface. Here, we report recent findings on high-Z materials, using an efficient massively parallel planewave implementation on some of the largest computational architectures currently available. We discuss the particular architectures employed and methodological advances required to harness them effectively. We present a pair-correlation function for U, calculated using quantum molecular dynamics, and discuss relaxations of Pu atoms in the vicinity of defects in aged and alloyed Pu. We find that the self-irradiation associated with aging has a negligible effect on the compressibility of Pu relative to other factors such as alloying.
Date: January 3, 2007
Creator: Yang, L H; Hood, R; Pask, J & Klepeis, J
System: The UNT Digital Library
Scenarios for Consuming Standardized Automated Demand Response Signals (open access)

Scenarios for Consuming Standardized Automated Demand Response Signals

Automated Demand Response (DR) programs require that Utility/ISO's deliver DR signals to participants via a machine to machine communications channel. Typically these DR signals constitute business logic information (e.g. prices and reliability/shed levels) as opposed to commands to control specific loads in the facility. At some point in the chain from the Utility/ISO to the loads in a facility, the business level information sent by the Utility/ISO must be processed and used to execute a DR strategy for the facility. This paper explores the various scenarios and types of participants that may utilize DR signals from the Utility/ISO. Specifically it explores scenarios ranging from single end user facility, to third party facility managers and DR Aggregators. In each of these scenarios it is pointed out where the DR signal sent from the Utility/ISO is processed and turned into the specific load control commands that are part of a DR strategy for a facility. The information in these signals is discussed. In some cases the DR strategy will be completely embedded in the facility while in others it may be centralized at a third party (e.g. Aggregator) and part of an aggregated set of facilities. This paper also discusses the pros …
Date: October 3, 2008
Creator: Koch, Ed & Piette, Mary Ann
System: The UNT Digital Library
Atomic Structure of Pyramidal Defects in GaN:Mg; Influence ofAnnealing (open access)

Atomic Structure of Pyramidal Defects in GaN:Mg; Influence ofAnnealing

The atomic structure of the characteristic defects (Mg-rich hexagonal pyramids) in p-doped bulk and MOCVD GaN:Mg thin films grown with Ga polarity was determined at atomic resolution by direct reconstruction of the scattered electron wave in a transmission electron microscope. Small cavities were present inside the defects, confirmed also with positron annihilation. The inside walls of the cavities were covered by GaN of reverse polarity compared to the matrix. Defects in bulk GaN:Mg were almost one order of magnitude larger than in thin films. An exchange of Ga and N sublattices within the defect compared to the matrix lead to a 0.6 {+-} 0.2 {angstrom} displacement between the Ga sublattices of these two areas. A [1100]/3 shift with change from AB stacking in the matrix to BC within the entire pyramid was observed. Annealing of the MOCVD layers lead to slight increase of the defect size and an increase of the photoluminescence intensity. Positron annihilation confirms presence of vacancies of different sizes triggered by the Mg doping in as-grown samples and decrease of their concentration upon annealing at 900 and 1000 C.
Date: October 3, 2005
Creator: Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; O'Keefe, M.; Hautakangas, S.; Saarinen, K. et al.
System: The UNT Digital Library
The effect of problem perturbations on nonlinear dynamical systems and their reduced order models (open access)

The effect of problem perturbations on nonlinear dynamical systems and their reduced order models

Reduced order models are used extensively in many areas of science and engineering for simulation, design, and control. Reduction techniques for nonlinear dynamical systems produce models that depend strongly on the nominal set of parameters for which the reduction is carried out. In this paper we address the following two questions: 'What is the effect of perturbations in the problem parameters on the output functional of a nonlinear dynamical system?' and 'To what extent does the reduced order model capture this effect?'
Date: March 3, 2005
Creator: Serban, R; Homescu, C & Petzold, L
System: The UNT Digital Library
Accelerator mass spectrometry of Strontium-90 for homeland security, environmental monitoring, and human health (open access)

Accelerator mass spectrometry of Strontium-90 for homeland security, environmental monitoring, and human health

Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of {sup 90}Sr by accelerator mass spectrometry. Despite a pervasive interference from {sup 90}Zr, our initial development has yielded an instrumental background of {approx} 10{sup 8} atoms (75 mBq) per sample. Further refinement of our system (e.g., redesign of our detector, use of alternative target materials) is expected to push the background below 10{sup 6} atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring, and human health.
Date: March 3, 2008
Creator: Tumey, S J; Brown, T A; Hamilton, T F & Hillegonds, D J
System: The UNT Digital Library
Direct CP, Lepton Flavor and Isospin Asymmetries in the Decays B->K(*)l+l- (open access)

Direct CP, Lepton Flavor and Isospin Asymmetries in the Decays B->K(*)l+l-

We measure rate asymmetries for the rare decays B {yields} K{sup (*)}{ell}{sup +}{ell}{sup -}, where {ell}{sup +}{ell}{sup -} is either e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -}, using a sample of 384 million B{bar B} events collected with the BABAR detector at the PEP-II e{sup +}e{sup -} collider. We find no evidence for direct CP or lepton-flavor asymmetries. For dilepton masses below the J/{psi} resonance, we find evidence for unexpectedly large isospin asymmetries in both B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*{ell}{sup +}{ell}{sup -} which differ respectively by 3.2{sigma} and 2.7{sigma}, including systematic uncertainties, from the Standard Model expectations.
Date: March 3, 2009
Creator: Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E. et al.
System: The UNT Digital Library
Nanoparticle Based Surface-Enhanced Raman Spectroscopy (open access)

Nanoparticle Based Surface-Enhanced Raman Spectroscopy

Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.
Date: January 3, 2005
Creator: Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Jusinski, Leonard; Laurence, Ted & Lane, Stephen M.
System: The UNT Digital Library
Electrical Isolation of ZnO by Ion Irradiation (open access)

Electrical Isolation of ZnO by Ion Irradiation

We demonstrate the formation of highly resistive single-crystal ZnO epilayers as a result of irradiation with MeV Li, O, and Si ions. Results show that the ion doses necessary for electrical isolation close-to-inversely depend on the number of ion-beam-generated atomic displacements. However, in all the cases studied, defect-induced electrical isolation of ZnO is unstable to rapid thermal annealing at temperatures above about 300 C . No significant improvement of thermal stability is found by varying ion mass, dose, and irradiation temperature (up to 350 C). Finally, a comparison of implant isolation in ZnO with that in GaN is presented.
Date: July 3, 2002
Creator: Kucheyev, S. O.; Jagadish, C.; Williams, J. S.; Deenapanray, P. N. K.; Yano, M.; Koike, K. et al.
System: The UNT Digital Library
Multiphase Advection and Radiation Diffusion with Material Interfaces on Unstructured Meshes (open access)

Multiphase Advection and Radiation Diffusion with Material Interfaces on Unstructured Meshes

A collection of numerical methods are presented for the advection or remapping of material properties on unstructured and staggered polyhedral meshes in arbitrary Lagrange-Eulerian calculations. The methods include several new procedures to track and capture sharp interface boundaries, and to partition radiation energy into multi-material thermal states. The latter is useful for extending and applying consistently single material radiation diffusion solvers to multi-material problems.
Date: October 3, 2002
Creator: Anninos, P
System: The UNT Digital Library
SLURM: Simple Linux Utility for Resource Management (open access)

SLURM: Simple Linux Utility for Resource Management

None
Date: April 3, 2003
Creator: Jette, Morris A.; Yoo, Andy B. & Grondona, Mark
System: The UNT Digital Library
Mid infrared observations of Van Maanen 2: no substellar companion. (open access)

Mid infrared observations of Van Maanen 2: no substellar companion.

The results of a comprehensive infrared imaging search for the putative 0.06 M{sub {circle_dot}} astrometric companion to the 4.4 pc white dwarf van Mannen 2 are reported. Adaptive optics images acquired at 3.8 {micro}m reveal a diffraction limited core of 0.09 inch and no direct evidence of a secondary. Models predict that at 5 Gyr, a 50 M{sub J} brown dwarf would be only 1 magnitude fainter than van Maanen 2 at this wavelength and the astrometric analysis suggested a separation of 0.2 inch. In the case of a chance alignment along the line of sight, a 0.4 mag excess should be measured. An independent photometric observation at the same wavelength reveals no excess. In addition, there exist published ISO observations of van Maanen 2 at 6.8 {micro}m and 15.0 {micro}m which are consistent with photospheric flux of a 6750 K white dwarf. If recent brown dwarf models are correct, there is no substellar companion with T{sub eff} {approx}> 500 K.
Date: November 3, 2004
Creator: Farihi, J; Becklin, E & Macintosh, B
System: The UNT Digital Library
Reviewers Comments on the 5th Symposium and the Status of Fusion Research 2003 (open access)

Reviewers Comments on the 5th Symposium and the Status of Fusion Research 2003

Better to understand the status of fusion research in the year 2003 we will first put the research in its historical context. Fusion power research, now beginning its sixth decade of continuous effort, is unique in the field of scientific research. Unique in its mixture of pure and applied research, unique in its long-term goal and its promise for the future, and unique in the degree that it has been guided and constrained by national and international governmental policy. Though fusion research's goal has from the start been precisely defined, namely, to obtain a net release of energy from controlled nuclear fusion reactions between light isotopes (in particular those of hydrogen and helium) the difficulty of the problem has spawned in the past a very wide variety of approaches to the problem. Some of these approaches have had massive international support for decades, some have been pursued only at a ''shoestring'' level by dedicated groups in small research laboratories or universities. In discussing the historical and present status of fusion research the implications of there being two distinctly different approaches to achieving net fusion power should be pointed out. The first, and oldest, approach is the use of strong magnetic …
Date: February 3, 2005
Creator: Post, R F
System: The UNT Digital Library
Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA (open access)

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of …
Date: March 3, 2004
Creator: Pickles, W. L.; Martini, B. A.; Silver, E. A. & Cocks, P. A.
System: The UNT Digital Library
Seismic Velocities Contain Information About Depth, Lithology, Fluid Content, and Microstructure (open access)

Seismic Velocities Contain Information About Depth, Lithology, Fluid Content, and Microstructure

Recent advances in field and laboratory methods for measuring elastic wave velocities provide incentive and opportunity for improving interpretation of geophysical data for engineering and environmental applications. Advancing the state-of-the-art of seismic imaging requires developing petrophysical relationships between measured velocities and the hydrogeology parameters and lithology. Our approach uses laboratory data and rock physics methods. Compressional (Vp) and shear (Vs) wave velocities, Vp/Vs ratios, and relative wave amplitudes show systematic changes related to composition, saturation, applied stress (analogous to depth), and distribution of clay for laboratory ultrasonic measurements on soils. The artificial soils were mixtures of Ottawa sand and a second phase, either Wyoming bentonite or peat moss used to represent clay or organic components found in natural soils. Compressional and shear wave velocities were measured for dry, saturated, and partially-saturated conditions, for applied stresses between about 7 and 100 kPa, representing approximately the top 5 m of the subsurface. Analysis of the results using rock physics methods shows the link between microstructure and wave propagation, and implications for future advances in seismic data interpretation. For example, we found that Vp in dry sand-clay mixtures initially increases as clay cements the sand grains and fills porosity, but then Vp decreases …
Date: January 3, 2002
Creator: Berge, P A & Bonner, B P
System: The UNT Digital Library
Implicit Occluders (open access)

Implicit Occluders

In this paper we propose a novel visibility-culling technique for optimizing the computation and rendering of opaque isosurfaces. Given a continuous scalar field f (x) over a domain D and an isovalue w, our technique exploits the continuity of f to determine conservative visibility bounds implicitly, i.e., without the need for actually computing the isosurface f{sup -1}(w). We generate Implicit Occluders based on the change in sign of f *(x) = f (x)-w, from positive to negative (or vice versa) in the neighborhood of the isosurface. Consider, for example, the sign of f * along a ray r cast from the current viewpoint. The first change in sign of f * within D must contain an intersection of r with the isosurface. Any additional intersection of the isosurface with r is not visible. Implicit Occluders constitute a general concept that can be exploited algorithmically in different ways depending on the framework adopted for visibility computations. In this paper, we propose a simple from-point approach that exploits well-known hardware occlusion queries.
Date: February 3, 2004
Creator: Pesco, S; Lindstrom, P; Pascucci, V & Silva, C T
System: The UNT Digital Library
Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests (open access)

Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals. Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.
Date: March 3, 2003
Creator: Cheng, J.; Twilley, K.; Murvosh, H.; Tu, Y.; Luke, B.; Yfantis, A. et al.
System: The UNT Digital Library
Sheath Physics and Boundary Conditions for Edge Plasmas (open access)

Sheath Physics and Boundary Conditions for Edge Plasmas

The boundary conditions of mass, momentum, energy, and charge appropriate for fluid formulations of edge plasmas are surveyed. We re-visit the classic problem of 1-dimensional flow, and note that the ''Bohm sheath criterion'' is requirement of connectivity of the interior plasma with the external world, not the result of termination of the plasma by a wall. We show that the nature of the interior plasma solution is intrinsically different for ion sources that inject above and below the electron sound speed. We survey the appropriate conditions to apply, and resultant fluxes, for a magnetic field obliquely incident on a wall, including the presence of drifts and radial transport. We discuss the consequences of toroidal asymmetries in wall properties, as well as experimental tests of such effects. Finally, we discuss boundary-condition modifications in the case of rapidly varying plasma conditions.
Date: September 3, 2003
Creator: Cohen, R. H. & Ryutov, D. D.
System: The UNT Digital Library
LORENTZ PHASE IMAGING AND IN-SITU LORENTZ MICROSCOPY OF PATTERNED CO-ARRAYS. (open access)

LORENTZ PHASE IMAGING AND IN-SITU LORENTZ MICROSCOPY OF PATTERNED CO-ARRAYS.

Understanding magnetic structures and properties of patterned and ordinary magnetic films at nanometer length-scale is the area of immense technological and fundamental scientific importance. The key feature to such success is the ability to achieve visual quantitative information on domain configurations with a maximum ''magnetic'' resolution. Several methods have been developed to meet these demands (Kerr and Faraday effects, differential phase contrast microscopy, magnetic force microscopy, SEMPA etc.). In particular, the modern off-axis electron holography allows retrieval of the electron-wave phase shifts down to 2{pi}/N (with typical N = 10-20, approaching in the limit N {approx} 100) in TEM equipped with field emission gun, which is already successfully employed for studies of magnetic materials at nanometer scale. However, it remains technically demanding, sensitive to noise and needs highly coherent electron sources. As possible alternative we developed a new method of Lorentz phase microscopy [1,2] based on the Fourier solution [3] of magnetic transport-of-intensity (MTIE) equation. This approach has certain advantages, since it is less sensitive to noise and does not need high coherence of the source required by the holography. In addition, it can be realized in any TEM without basic hardware changes. Our approach considers the electron-wave refraction in …
Date: August 3, 2003
Creator: VOLKOV,V. V. ZHU,Y.
System: The UNT Digital Library
Arsenic Mobilization from Contaminated Sediments: A Full-scale Experiment in Progress (open access)

Arsenic Mobilization from Contaminated Sediments: A Full-scale Experiment in Progress

The mobilization of arsenic was examined in a system where the deposition of iron and arsenic have been substantially modified by large-scale manipulations. This engineering practice was designed to decrease arsenic concentrations in water supplied to the City of Los Angeles. Accomplishing this objective, however, has resulted in significant accumulation of arsenic and iron in the sediments of a reservoir on the Los Angeles Aqueduct. Arsenic and iron are released into the porewater at depth in the sediment, consistent with reductive dissolution of iron(III) oxyhydroxides. Factors influencing the possible re-sorption of arsenic onto residual iron(III) oxyhydroxides solids have been examined. Reduction of As(V) to As(III) alone cannot account for arsenic mobilization since arsenic occurs in the solid phase as As(III) well above the depth at which it is released into the porewater. Competition from other porewater constituents could suppress re-sorption of arsenic released by reductive dissolution.
Date: February 3, 2004
Creator: O'Day, P A; Campbell, K; Dixit, S & Hering, J G
System: The UNT Digital Library
Designers Workbench: Towards Real-Time Immersive Modeling (open access)

Designers Workbench: Towards Real-Time Immersive Modeling

This paper introduces the DesignersWorkbench, a semi-immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates from a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The DesignersWorkbench aims at closing this technology or ''digital gap'' experienced by design and CAD engineers by transforming the classical design paradigm into its filly integrated digital and virtual analog allowing collaborative development in a semi-immersive virtual environment. This project emphasizes two key components from the classical product design cycle: freeform modeling and analysis. In the freeform modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.
Date: October 3, 2001
Creator: Kuester, F; Duchaineau, M A; Hamann, B; Joy, K I & Ma, K L
System: The UNT Digital Library