Role of Transport Phenomena in the Evolution of Geometry, Composition and Structure (open access)

Role of Transport Phenomena in the Evolution of Geometry, Composition and Structure

Abstract Fusion welding is used extensively in industries that support the nation's energy supply, defense, infrastructure, and standard of living. Safety and reliability of the welded joints are affected by their geometry, composition and structure. This report provides an account of the significant advances made in quantitative understanding of the geometry, composition and various aspects of the weldment structure with financial support from DOE/BES. In particular, this report provides an account of the research conducted under the grant DE-FG02-84ER45158 in this important area and lists all the publications that document the details of the technical accomplishments that resulted from the work. Investigations of heat transfer, fluid flow and alloying element vaporization during laser welding resulted in a new technique for the determination of the peak temperature in the weld pool and provided a new method to estimate weld metal composition. Studies on the interfacial phenomena in fusion welding resulted in quantitative understanding of the interrelationship between the weld metal composition and geometry and provided new knowledge as to when the surface active elements would affect the weldment geometry and when these elements would have no effect on the geometry. Partitioning of oxygen nitrogen and hydrogen between the welding environment and …
Date: November 17, 2005
Creator: DebRoy, Tarasankar
System: The UNT Digital Library
Radiation Shielding Materials and Containers Incorporating Same (open access)

Radiation Shielding Materials and Containers Incorporating Same

An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.
Date: November 1, 2005
Creator: Mirsky, Steven M.; Krill, Stephen J. & Murray, Alexander P.
System: The UNT Digital Library