Degree Discipline

The Performance of Silicon Based Sensor and its Application in Silver Toxicity Studies (open access)

The Performance of Silicon Based Sensor and its Application in Silver Toxicity Studies

The silicon based sensor is able to detect part per trillion ionic silver in 0.0098% hydrofluoric acid based on the open circuit potential (OCP) measurement. The OCP jump of 100 ppt ionic silver solution is up to 120 mV. The complex agent can effectively suppress the ionic silver concentration and suppress the OCP signal. The ability of complex agent to suppress the OCP signal depends on the formation constant of the complex with silver. The complex adsorbed on the sensor surface induces a second OCP jump, the height of the second jump depends on the formation constant of the complex. The MINEQL chemical equilibrium modeling program is used to calculate the ionic silver concentration when complex agent presents, a discrepancy is found between the MINEQL simulation result and the OCP signal of the silicon based sensor. The toxicity of ionic silver to C. dubia is studied parallel to the OCP signal of silicon based sensor. Less toxicity is found when the complex agent is present similar to the OCP signal. Another discrepancy is found between the MINEQL simulation and the toxicity test when MINEQL simulation is used to predict and control the ionic silver concentration. The data from both biosensor …
Date: August 2000
Creator: Peng, Haiqing
System: The UNT Digital Library
Diffusion Barriers/Adhesion Promoters. Surface and Interfacial Studies of Copper and Copper-Aluminum Alloys (open access)

Diffusion Barriers/Adhesion Promoters. Surface and Interfacial Studies of Copper and Copper-Aluminum Alloys

The focus of this research is to study the interaction between copper and the diffusion barrier/adhesion promoter. The behavior of copper sputter-deposited onto sputter-cleaned tantalum nitride is investigated. The data show that copper growth on tantalum nitride proceeds with the formation of 3-D islands, indicating poor adhesion characteristics between copper and Ta0.4N. Post-annealing experiments indicate that copper will diffuse into Ta0.4N at 800 K. Although the data suggests that Ta0.4N is effective in preventing copper diffusion, copper's inability to wet Ta0.4N will render this barrier ineffective. The interaction of copper with oxidized tantalum silicon nitride (O/TaSiN) is characterized. The data indicate that initial copper depositions result in the formation a conformal ionic layer followed by Cu(0) formation in subsequent depositions. Post-deposition annealing experiments performed indicate that although diffusion does not occur for temperatures less than 800 K, copper "de-wetting" occurs for temperatures above 500 K. These results indicate that in conditions where the substrate has been oxidized facile de-wetting of copper may occur. The behavior of a sputter-deposited Cu0.6Al0.4 film with SiO2 (Cu0.6Al0.4/SiO2) is investigated. The data indicate that aluminum segregates to the SiO2 interface and becomes oxidized. For copper coverages less than ~ 0.31 ML (based on a Cu/O …
Date: August 2000
Creator: Shepherd, Krupanand Solomon
System: The UNT Digital Library