HYBRID SULFUR ELECROLYZER DEVELOPMENT, NHI WORK PACKAGE N-SR07TC0301, FY08 FIRST QUARTER REPORT (open access)

HYBRID SULFUR ELECROLYZER DEVELOPMENT, NHI WORK PACKAGE N-SR07TC0301, FY08 FIRST QUARTER REPORT

Hydrogen has been identified as a leading candidate to replace petroleum as part of the transition to a sustainable energy system, and major efforts are being conducted worldwide to develop the technologies and supporting activities required for this transition. In the United States, the federal research efforts are led by the U.S. Department of Energy (DOE). The U.S. DOE Hydrogen Program is an integrated inter-office program being conducted by the Office of Energy Efficiency and Renewable Energy, Office of Nuclear Energy (DOE-NE), Office of Fossil Energy and Office of Science. The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. The HyS Process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel …
Date: December 20, 2007
Creator: Summers, W
System: The UNT Digital Library
Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0 (open access)

Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on …
Date: April 25, 2007
Creator: McCoy, M; Kusnezov, D; Bikkel, T & Hopson, J
System: The UNT Digital Library
Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5 (open access)

Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on …
Date: September 13, 2007
Creator: Kusnezov, D; Bickel, T; McCoy, M & Hopson, J
System: The UNT Digital Library
Heavy Ion Fusion Science Virtual National Laboratory1st Quarter FY08 Milestone Report: Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX ExperimentsReport Initial work on developing Plasma Modeling Capability in WARP for NDCX Experiments (open access)

Heavy Ion Fusion Science Virtual National Laboratory1st Quarter FY08 Milestone Report: Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX ExperimentsReport Initial work on developing Plasma Modeling Capability in WARP for NDCX Experiments

This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has developed and implemented an initial beam-in-plasma implicit modeling capability in Warp; has carried out tests validating the behavior of the models employed; has compared the results of electrostatic and electromagnetic models when applied to beam expansion in an NDCX-I relevant regime; has compared Warp and LSP results on a problem relevant to NDCX-I; has modeled wave excitation by a rigid beam propagating through plasma; and has implemented and begun testing a more advanced implicit method that correctly captures electron drift motion even when timesteps too large to resolve the electron gyro-period are employed. The HIFS-VNL is well on its way toward having a state-of-the-art source-to-target simulation capability that will enable more effective support of ongoing experiments in the NDCX series and allow more confident planning for future ones.
Date: December 10, 2007
Creator: Friedman, A.; Cohen, R. H.; Grote, D. P. & Vay, J. L.
System: The UNT Digital Library