Language

Synthesis, Characterization, Standardization, and Validation of Luminescence Optical Chemosensors for the Detection of Carbon Dioxide, Aluminum Ions, and Silver Ions for Real-Life Applications

The presented dissertation encompasses three distinct investigations into novel complexes with diverse applications. Firstly, a Europium-based complex, K[Eu(hfa)4], exhibits remarkable potential for detecting dissolved CO2 in an ethylene glycol medium, offering a low limit of detection, rapid response times, and high signal-to-noise ratios. This complex demonstrates promise for quantifying CO2 concentrations and finds utility in sugar fermentation monitoring. Secondly, an innovative ratiometric optical sensor, Eu(tta)3([4,4'-(t-bu)2-2,2'-bpy)], showcases exceptional sensitivity and selectivity in detecting aluminum ions, making it suitable for environmental and biological applications. It exhibits reliable quantification in both methanol and aqueous samples, with remarkable accuracy validated by ICP-OES. Lastly, modifications to the Au3Pz3 complex synthesis enable the development of a silver ion sensor, paving the way for detecting silver ion leaching in real-life scenarios, such as silver nanoparticle-embedded bandages. The research extends to the synthesis of silver nanoparticles using various methods and foresees expanded in vitro and in vivo studies. These investigations collectively offer insights into the development of advanced sensing technologies with significant implications for a wide range of practical applications.
Date: December 2023
Creator: Perera, Nawagamu Appuhamilage Kasun
System: The UNT Digital Library
Cross-Conjugation Effects on Fused β, β'–π–Extended Porphyrins (open access)

Cross-Conjugation Effects on Fused β, β'–π–Extended Porphyrins

Cross-conjugation in molecules has been seen in nature for many years but was not pursued due to the difficulty of their synthesis and their lack of stability. Recently, it has become more interesting due to the rise of molecular electronics. Linear conjugation serves well as the wires to conduct electrons, but molecular electronics are made up of more than just wires. Molecules are needed that possess an on/off switch that can allow or deter conduction. Cross-conjugated systems show promise in their ability to be turned on or off from external stimuli. Pentacene quinone is a well-known cross-conjugated molecule that already shows promise in the field of molecular semiconductors. By synthetically fusing the pentacene quinone to the β, β' positions of a porphyrin, it has been shown that both the solubility and stability have been greatly improved. This has allowed us to pursue functionalization of the quinone moiety. Several new cross-conjugated pentacene quinone fused porphyrin systems were synthesized and studied. It was found that cross-conjugated platinum porphyrins show enhanced fluorescence, and phosphorescence that shifts toward the Near IR. Additionally, strong electron withdrawing groups show potential in charge transfer, and a lower HOMO to LUMO gap, while mildly withdrawing groups have a …
Date: December 2023
Creator: Washburn, Spenser L.
System: The UNT Digital Library
Kinetics and Atmospheric Chemistry Studies of Halogenated Species (open access)

Kinetics and Atmospheric Chemistry Studies of Halogenated Species

Quantitative information about halogenated hydrocarbons is important for understanding their impact on atmospheric ozone chemistry and climate change, their regulation, and the devising of improved substitutes. The Montreal Protocol aimed to regulate the utilization and manufacturing of hydrochlorofluorocarbon compounds (HCFCs), contributing to ozone layer depletion. The 2016 Kigali Amendment to the Montreal Protocol agreement, Annex C listed 274 HCFCs. Only 16 of them have been measured experimentally. The rest were set to zero by default. These reported global warming potentials (GWPs) play a crucial role in formulating policies for gradually reducing the usage and production of HCFCs to prevent atmospheric impact. Here we are studying 1-chloro-1-fluoro-ethane (CH3CHFCl) as a test of past theory. There are no prior experimental measurements of the reactivity of CH3CHFCl with hydroxyl (OH) radicals, which primarily determines its atmospheric lifetime, nor of its infrared (IR) spectrum. Saturated hydrofluorocarbons (HFCs) are non-ozone depleting substitutes for chlorofluorocarbons deprecated under the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer, but they exhibit high global warming potentials (GWPs) and the Kigali Amendment adopted in 2016 outlines their phase down. Unsaturated HFCs offer more reactive alternatives, whose likely short atmospheric lifetimes would imply small GWPs. Because their GWPs are …
Date: December 2023
Creator: Sapkota, Ramesh
System: The UNT Digital Library

Design and Development of a Paper Spray Air Sampling Device for Use in Clinical, Defense, and Environmental Applications

Environmental monitoring is becoming increasingly important, primarily in urban areas due to the concentrated levels of human activities. The air sampling device presented is a novel method to sample air which harnesses the power of paper spray ionization paired with the intrinsic advantages of mass spectrometry such as high sensitivity, high selectivity, high throughput, and the ability to monitor multiple compounds at once.
Date: December 2023
Creator: Murillo, Wilbert Alberto
System: The UNT Digital Library

Nitrogen Reduction Reaction: Deposition, Characterization and Selectivity of Transition Metal (V, Co and Ti) Oxynitrides as Electrocatalysts

The electrocatalytic nitrogen reduction reaction (NRR) is of considerable interest due to its potential for less energy intensive and environmentally friendly ammonia production which is critical for agricultural and clean energy applications. However, the selectivity of NRR compared to the hydrogen evolution reaction (HER) often poses challenges for various catalysts, including Earth-abundant transition metal oxynitrides like Ti, V, and Co. In this work, a comparative analysis of the selectivity of these three metal oxynitrides was conducted, each having different metal oxophilicities. A combination of electrochemical, surface characterizations and density functional theory (DFT) calculations were employed to directly assess NRR and HER activities under the same reaction conditions. Results show that cobalt oxynitrides exhibit NRR activity at pH 10, involving the electrochemical reduction of both lattice-bound nitrogen and dissolved N2, although more HER activity was observed. In contrast, vanadium oxynitride films displayed HER inactivity at pH 7 and 10 but demonstrated NRR activity at pH 7, while titanium oxynitrides were active at pH 3.2 but inactive under neutral and basic pH conditions. These comprehensive studies highlight substantial variations in HER and NRR selectivity based on transition metal oxophilicity/azaphilicity, indicating distinct mechanisms governing NRR and HER mechanisms.
Date: December 2023
Creator: Chukwunenye, Precious O.
System: The UNT Digital Library
Acenaphthene and 1,10-Phenanthroline-Fused Βeta-Functionalized Porphyrins (open access)

Acenaphthene and 1,10-Phenanthroline-Fused Βeta-Functionalized Porphyrins

A series of acene-fused porphyrins and 1,10-phenanthroline-fused porphyrins were synthesized and characterized via NMR spectroscopy and mass spectrometry. The acene-fused porphyrins exhibit unique optoelectronic properties, most notably they exhibit highly red-shifted absorption bands. The 1,10-phenanthroline-fused porphyrins are of interest for their ability to bond to as variety of metals to form chelation complexes.
Date: December 2023
Creator: Arvidson, Jacob Randall
System: The UNT Digital Library
Metal Nitride Complexes as Potential Catalysts for C-H and N-H Bonds Activation (open access)

Metal Nitride Complexes as Potential Catalysts for C-H and N-H Bonds Activation

Recognizing the dual ability of the nitride ligand to react as a nucleophile or an electrophile – depending on the metal and other supporting ligands – is a key to their broad-range reactivity; thus, three DFT studies were initiated to investigate these two factors effects (the metal and supporting ligands) for tuning nitride ligand reactivity for C-H and N-H bond activation/functionalization. We focused on studying these factors effects from both a kinetic and thermodynamic perspective in order to delineate new principles that explain the outcomes of TMN reactions. Chapter 2 reports a kinetic study of C–H amination of toluene to produce a new Csp3–N (benzylamine) or Csp2–N (para-toluidine) bond activated by diruthenium nitride intermediate. Studying three different mechanisms highlighted the excellent ability of diruthenium nitride to transform a C-H bond to a new C-N bond. These results also revealed that nitride basicity played an important role in determining C–H bond activating ability. Chapter 3 thus reports a thermodynamic study to map basicity trends of more than a one hundred TMN complexes of the 3d and 4d metals. TMN pKb(N) values were calculated in acetonitrile. Basicity trends decreased from left to right across the 3d and 4d rows and increases from …
Date: December 2023
Creator: Alharbi, Waad Sulaiman S.
System: The UNT Digital Library

Corrosion Mechanism and Prevention of Wire Bonded Device in Microelectronic Manufacturing and Spectroscopic Investigation of Copper Etch Chemical Equilibria for High Density Interconnect Application

In the first part of this dissertation work, Al bond pad corrosion behavior was investigated in the presence of common industrial contaminants such as chloride (Cl-) and fluoride (F-). Al corrosion while in direct contact with Cu displayed rapid hydrogen (H2) gas evolution and dendrite propagation. In contrast, Al without bimetallic contact showed only minor surface roughening. This observed difference in the corrosion mechanism between Cl- and F- is attributed to the solubility of the corrosion products (AlCl3 vs. AlF3) formed on the Al surface. Our subsequent work explored corrosion prevention inhibition of wire-bonded devices (WBD) in the Cl- environment. Our research shows that the Al bond pad was protected against corrosion by chemically modifying the surface of the Cu wires, thereby preventing the H2 evolution. The inhibitor was observed to be highly selective, thermally stable, hydrophobic, and cost-effective, making it viable for industrial application of this coating for Al bond pad corrosion prevention. In the second part of the dissertation work, we utilized a novel approach of using ultraviolet-visible spectroscopy (UV-Vis) as a chemical-sensitive monitoring tool of the chemical environment in Cu etch bath. The UV-Vis technique illuminates the roles of H+, Cl-, Cu+, and Cu2+ to the etch …
Date: December 2021
Creator: Ashok Kumar, Goutham Issac
System: The UNT Digital Library
Instrumental Development and Implementation of Portable Membrane Inlet Mass Spectrometry for Homeland Security and Environmental Applications (open access)

Instrumental Development and Implementation of Portable Membrane Inlet Mass Spectrometry for Homeland Security and Environmental Applications

A rapidly growing topic of great interest is the adaptation of benchtop analytical instrumentation for use in outdoor harsh environments. Some of the areas that stand to benefit from field instrumentation development include government agencies involved with the preservation of the environment and institutions responsible for the safety of the general public. Detection systems are at the forefront of the miniaturization movement as the interest in analyte identification and quantitation appears to only be accessible through the use of analytical instrumentation. Mass spectrometry is a distinguished analytical technique known for its ability to detect the mass-to-charge (m/z) ratios of gas-phase ions of interest. Although these systems have been routinely limited to research lab-based analysis, there has been considerable development of miniaturized and portable mass spectrometry systems. Membrane Inlet Mass Spectrometry (MIMS) is becoming a common method of sample introduction that is subject to significant development. MIMS allows for minimal sample preparation, continuous sampling, and excludes complicated analyte introduction techniques. Sampling is accomplished using a semipermeable membrane that allows selective analyte passage into the vacuum of the mass spectrometer. MIMS is becoming the preeminent choice of homeland security and environmental monitoring applications with increasing opportunities for the future development of specialized …
Date: December 2021
Creator: Anguiano Virgen, Camila
System: The UNT Digital Library

Homoleptic and Heteroleptic Platinum(II) Complexes for Organic Light Emitting Diodes and Humidity Sensors: Synthesis, Characterization, and Applications

This dissertation focuses on the design, synthesis, characterization of platinum (II) pyridylazolate complexes and develop high performance organic light emitting diodes (OLEDs) and design and execute high-sensitivity humidity sensors based on the luminescent metal-organic complexes of platinum. A majority of existing platinum compounds do not dissolve in organic solvents, making it difficult to analyze the photophysical characteristics of complexes in solution, a key part of understanding chemical photophysical properties. Furthermore, due to the poor quantum yield, it is inefficient for use in devices such as OLEDs. Chapter 2 reports the synthesis and characterization of a novel heteroleptic platinum(II) pyridylazolate complex with high solubility and quantum yield. The photochemistry of the complex is studied, including efficiency, emission profiles, and lifetimes at different temperatures. Chapter 3 reports the power efficiency (lm/W), current efficiency (cd/A), external quantum efficiency (EQE), luminance and operating voltage (V) of OLED devices made with the heteroleptic platinum(II) pyridylazolate complex. The relation between thickness of hole transport layer and electron transport layer on performance of devices has been studied through building a variety of devices. Chapter 4 includes application of a homoleptic platinum(II) pyridylazolate complex in humidity sensor. In many environments, the relationship between moisture content and emissive wavelength …
Date: December 2023
Creator: Farvid, Seyedmajid
System: The UNT Digital Library
The Impact of Computational Methods on Transition Metal-containing Species (open access)

The Impact of Computational Methods on Transition Metal-containing Species

Quantum chemistry methodologies can be used to address a wide variety of chemical problems. Key to the success of quantum chemistry methodologies, however, is the selection of suitable methodologies for specific problems of interest, which often requires significant assessment. To gauge a number of methodologies, the utility of density functionals (BLYP, B97D, TPSS, M06L, PBE0, B3LYP, M06, and TPSSh) in predicting reaction energetics was examined for model studies of C-O bond activation of methoxyethane and methanol. These species provide excellent representative examples of lignin degradation via C-O bond cleavage. PBE0, which performed better than other considered DFT functionals, was used to investigate late 3d (Fe, Co, and Ni), 4d (Ru, Rh, and Pd), and 5d (Re, Os, and Ir) transition metal atom mediated Cβ -O bond activation of the β–O–4 linkage of lignin. Additionally, the impact of the choice of DFT functionals, basis sets, implicit solvation models, and layered quantum chemical methods (i.e., ONIOM, Our Own N-layered Integrated molecular Orbital and molecular Mechanics) was investigated for the prediction of pKa for a set of Ni-group metal hydrides (M = Ni, Pd, and Pt) in acetonitrile. These investigations have provided insight about the utility of a number of theoretical methods in …
Date: December 2015
Creator: Wang, Jiaqi (Physical chemistry researcher)
System: The UNT Digital Library