Synthesis and properties of novel cage-functionalized crown ethers and cryptands. (open access)

Synthesis and properties of novel cage-functionalized crown ethers and cryptands.

A novel cryptand was synthesized which contained a 3,5-disubstituted-4- oxahexacyclo[5.4.1.02,6.03,10.05,9.08,11] dodecane "cage" moiety. In alkali metal picrate extraction experiments the cryptand exhibited high avidity towards Rb+ and Cs+, when compared with the corresponding model compound. A computational study of a series of cage-functionalized cryptands and their alkali metal-complexes was performed. The X-ray crystal structure of a K+-complexed bis-cage-annulated 20-crown-6 was obtained. The associated picrate anion was found to be intimately involved in stabilization of the host-guest complex. The interaction energy between the host-guest complex and picrate anion has been calculated, and the energy thereby obtained has been corrected for basis set superposition error.
Date: August 2001
Creator: Hazlewood, Anna
System: The UNT Digital Library
Hydrogen terminated silicon surfaces: Development of sensors to detect metallic contaminants and stability studies under different environments (open access)

Hydrogen terminated silicon surfaces: Development of sensors to detect metallic contaminants and stability studies under different environments

Hydrogen terminated silicon surfaces have been utilized to develop sensors for semiconductor and environmental applications. The interaction of these surfaces with different environments has also been studied in detail. The sensor assembly relevant to the semiconductor industry utilizes a silicon-based sensor to detect trace levels of metallic contaminants in hydrofluoric acid. The sensor performance with respect to two non-contaminating reference electrode systems was evaluated. In the first case, conductive diamond was used as a reference electrode. In the second case, a dual silicon electrode system was used with one of the silicon-based electrodes protected with an anion permeable membrane behaving as the quasi reference electrode. Though both systems could function well as a suitable reference system, the dual silicon electrode design showed greater compatibility for the on-line detection of metallic impurities in HF etching baths. The silicon-based sensor assembly was able to detect parts- per-trillion to parts-per-billion levels of metal ion impurities in HF. The sensor assembly developed for the environmental application makes use of a novel method for the detection of Ni2+using attenuated total reflection (ATR) technique. The nickel infrared sensor was prepared on a silicon ATR crystal uniformly coated by a 1.5 micron Nafion film embedded with dimethylglyoxime …
Date: August 2002
Creator: Ponnuswamy, Thomas Anand
System: The UNT Digital Library
Electrodeposition of Diamond-like Carbon Films (open access)

Electrodeposition of Diamond-like Carbon Films

Electrodeposition of diamond-like carbon (DLC) films was studied on different substrates using two different electrochemical methods. The first electrochemical method using a three-electrode system was studied to successfully deposit hydrogenated DLC films on Nickel, Copper and Brass substrates. The as-deposited films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV). A variety of experimental parameters were shown to affect the deposition process. The second electrochemical method was developed for the first time to deposit hydrogen free DLC films on Ni substrates through a two-electrode system. The as-deposited films were characterized by Raman spectroscopy and FTIR. According to Raman spectra, a high fraction of diamond nanocrystals were found to form in the films. Several possible mechanisms were discussed for each deposition method. An electrochemical method was proposed to deposit boron-doped diamond films for future work.
Date: August 2002
Creator: Chen, Minhua
System: The UNT Digital Library
The Performance of Silicon Based Sensor and its Application in Silver Toxicity Studies (open access)

The Performance of Silicon Based Sensor and its Application in Silver Toxicity Studies

The silicon based sensor is able to detect part per trillion ionic silver in 0.0098% hydrofluoric acid based on the open circuit potential (OCP) measurement. The OCP jump of 100 ppt ionic silver solution is up to 120 mV. The complex agent can effectively suppress the ionic silver concentration and suppress the OCP signal. The ability of complex agent to suppress the OCP signal depends on the formation constant of the complex with silver. The complex adsorbed on the sensor surface induces a second OCP jump, the height of the second jump depends on the formation constant of the complex. The MINEQL chemical equilibrium modeling program is used to calculate the ionic silver concentration when complex agent presents, a discrepancy is found between the MINEQL simulation result and the OCP signal of the silicon based sensor. The toxicity of ionic silver to C. dubia is studied parallel to the OCP signal of silicon based sensor. Less toxicity is found when the complex agent is present similar to the OCP signal. Another discrepancy is found between the MINEQL simulation and the toxicity test when MINEQL simulation is used to predict and control the ionic silver concentration. The data from both biosensor …
Date: August 2000
Creator: Peng, Haiqing
System: The UNT Digital Library
Diffusion Barriers/Adhesion Promoters. Surface and Interfacial Studies of Copper and Copper-Aluminum Alloys (open access)

Diffusion Barriers/Adhesion Promoters. Surface and Interfacial Studies of Copper and Copper-Aluminum Alloys

The focus of this research is to study the interaction between copper and the diffusion barrier/adhesion promoter. The behavior of copper sputter-deposited onto sputter-cleaned tantalum nitride is investigated. The data show that copper growth on tantalum nitride proceeds with the formation of 3-D islands, indicating poor adhesion characteristics between copper and Ta0.4N. Post-annealing experiments indicate that copper will diffuse into Ta0.4N at 800 K. Although the data suggests that Ta0.4N is effective in preventing copper diffusion, copper's inability to wet Ta0.4N will render this barrier ineffective. The interaction of copper with oxidized tantalum silicon nitride (O/TaSiN) is characterized. The data indicate that initial copper depositions result in the formation a conformal ionic layer followed by Cu(0) formation in subsequent depositions. Post-deposition annealing experiments performed indicate that although diffusion does not occur for temperatures less than 800 K, copper "de-wetting" occurs for temperatures above 500 K. These results indicate that in conditions where the substrate has been oxidized facile de-wetting of copper may occur. The behavior of a sputter-deposited Cu0.6Al0.4 film with SiO2 (Cu0.6Al0.4/SiO2) is investigated. The data indicate that aluminum segregates to the SiO2 interface and becomes oxidized. For copper coverages less than ~ 0.31 ML (based on a Cu/O …
Date: August 2000
Creator: Shepherd, Krupanand Solomon
System: The UNT Digital Library

Substituent Effects: A Computational Study on Stabilities of Cumulenes and Low Barrier Hydrogen Bonds

Access: Use of this item is restricted to the UNT Community
The effect of substituents on the stabilities of cumulenes-ketenes, allenes, diazomethanes and isocyanates and related systems-alkynes, nitriles and nitrile oxides is studied using the density functional theory (B3LYP, SVWN and BP86) and ab initio (HF, MP2) calculations at the 6-31G* basis set level. Using isodesmic reactions, correlation between stabilization energies of cumulenes and substituent group electronegativities (c BE) is established and the results from DFT and MP2 methods are compared with the earlier HF calculations. Calculations revealed that the density functional methods can be used to study the effect of substituents on the stabilities of cumulenes. It is observed that the cumulenes are stabilized by electropositive substituent groups from s -electron donation and p -electron withdrawal and are destabilized by electronegative substituent groups from n-p donation. The calculated geometries of the cumulenes are compared with the available experimental data.High level ab initio and density functional theory calculations have been used to study the energetics of low-barrier hydrogen bond (LBHB) systems. Using substituted formic acid-formate anion complexes as model LBHB systems, hydrogen bond strength is correlated to the pKa mismatch between the hydrogen bond donor and the hydrogen bond acceptor. LBHB model systems are characterized by the 1H-NMR chemical shift calculations. …
Date: August 2000
Creator: Kumar, Ganesh Angusamy
System: The UNT Digital Library
Photophysical properties of pyrene, 2,7 diazapyrene and 1,3-bis(β-naphthyl)propane. (open access)

Photophysical properties of pyrene, 2,7 diazapyrene and 1,3-bis(β-naphthyl)propane.

The luminescence properties of Van Der Waals' dimers and clusters of pyrene and diazapyrene have been investigated. Excimers, dimeric species which are associative in an excited electronic state and dissociative in their ground state, have long been established and play an important role in many areas of photochemistry. My work here focuses on the luminescence and absorption properties of ground state dimers/aggregates, which are less understood, and allows further characterization of the ground state and excited state association of these aromatic molecules.
Date: August 2007
Creator: Boateng, Stephen
System: The UNT Digital Library
Design and Synthesis of Novel Cage-Functionalized Crown Ethers: A New Class of Ag Complexants. (open access)

Design and Synthesis of Novel Cage-Functionalized Crown Ethers: A New Class of Ag Complexants.

Three different types of cage crown ethers have been prepared and their complexation properties with Ag(I) have been studied. Atomic absorption, fluorescence quenching, and UV absorption have been used to study the interaction between the hosts (cage crown ethers) and guests (Ag+). For the cage-annulated crown ethers that contain aromatic rings, cation-π and π-π interactions may contribute significantly to the overall complexation ability of the host system. Piperazine groups may cooperate, and the piperazine nitrogen atoms provide unshared electrons, which may form a complex with Ag+. In addition, relatively soft donor atoms (e.g., Br) are well-suited for complexation with Ag+, which is a softer Lewis acid than alkali metal cations.
Date: August 2003
Creator: Lai, Huiguo
System: The UNT Digital Library
Layered Double Hydroxides: Synthesis, Characterization, and Interaction of Mg-Al Systems with Intercalated Tetracyanonickelate(II) (open access)

Layered Double Hydroxides: Synthesis, Characterization, and Interaction of Mg-Al Systems with Intercalated Tetracyanonickelate(II)

The square-planar tetracyanonickelate(II) anion was intercalated into 2:1 and 3:1 Mg-Al layered double hydroxide systems (LDHs). In the 2:1 material, the anion holds itself at an angle of about 30° to the layers, whereas in the 3:1 material it lies more or less parallel to the layers. This is confirmed by orientation effects in the infrared spectra of the intercalated materials and by X-ray diffraction (XRD) data. The measured basal spacings for the intercalated LDH hosts are approximately 11 Å for the 2:1 and approximately 8 Å for the 3:1. The IR of the 2:1 material shows a slight splitting in the ν(CN) peak, which is suppressed in that compound's oriented IR spectrum, indicating that at least some of the intercalated anion's polarization is along the z-axis. This effect is not seen in the 3:1 material. A comparison between chloride LDHs and nitrate LDHs was made with respect to intercalation of tetracyanonickelate(II) anions. Both XRD data and atomic absorption spectroscopy (AAS) data of the LDH tetracyanonickelates confirms that there are no significant differences between the products from the two types of starting materials. The presence of a weak ν(NO) peak in the IR spectra of those samples made from nitrate …
Date: August 2004
Creator: Brister, Fang Wei
System: The UNT Digital Library
Modeling the chemical and photophysical properties of gold complexes. (open access)

Modeling the chemical and photophysical properties of gold complexes.

Various gold complexes were computationally investigated, to probe their photophysical, geometric, and bonding properties. The geometry of AuI complexes (ground state singlet) is very sensitive to the electronic nature of the ligands: σ-donors gave a two-coordinate, linear shape; however, σ-acceptors yielded a three-coordinate, trigonal planar geometry. Doublet AuIIL3 complexes distort to T-shape, and are thus ground state models of the corresponding triplet AuIL3. The disproportionation of AuIIL3 to AuIL3 and AuIIIL3 is endothermic for all ligands investigated, however, σ-donors are better experimental targets for AuII complexes. For dimeric AuI complexes, only one gold center in the optimized triplet exciton displays a Jahn-Teller distortion, and the Au---Au distance is reduced versus the ground state distance (i.e., two reasons for large Stokes' shifts).
Date: August 2004
Creator: Barakat, Khaldoon A.
System: The UNT Digital Library
Investigation of Structure and Properties of Low Temperature Deposited Diamond-Like Carbon Films (open access)

Investigation of Structure and Properties of Low Temperature Deposited Diamond-Like Carbon Films

Electrodeposition is a novel method for fabrication of diamond-like carbon (DLC) films on metal substrates. In this work, DLC was electrochemically deposited on different substrates based on an anodic oxidation cyclization of acetylene in liquid ammonia. Successfully anodic deposition was carried out for DLC onto nickel substrate at temperatures below -40°C. Comparative studies were performed on a series of different carbon sources (acetylene, sodium acetylide, and a mixture of acetylene and sodium acetylide). The films were characterized using a variety of methods including Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), XPS valence band spectra, and/or scanning electron microscopy (SEM). Raman spectroscopy is used as a bench mark technique to verify the presence of deposited DLC films, to access the films homogeneities, and to provide the ratio of the different carbon phases, mainly disordered graphite (D) and graphite (G) phases in the films. A combination of the Raman with FTIR and valence band spectra analysis allowed the distinction between hydrogenated DLC and unhydrogenated DLC films. Three different kinds of DLC [(1) hydrogenated DLC (a-C:H); (2) tetrahedral hydrogenated DLC (ta-C:H); and (3) graphitic-like DLC] were deposited depending upon the deposition conditions and substrates. Temperature and current density are …
Date: August 2004
Creator: Pingsuthiwong, Charoendee
System: The UNT Digital Library
Improvement of Homogeneity and Adhesion of Diamond-Like Carbon Films on Copper Substrates (open access)

Improvement of Homogeneity and Adhesion of Diamond-Like Carbon Films on Copper Substrates

Electrodeposition method is used to deposit diamond-like carbon (DLC) films on copper substrates via anodic oxidation at low temperature. These films are characterized using Raman spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. Homogeneity of these films is studied using Raman spectroscopy and scanning electron microscopy. Scotch tape peel tests indicate adherent film on copper substrate. Carbon phase transformation is studied using thermal annealing experiments in conjunction with Raman spectroscopy and scanning electron microscopy. A cathodic electrochemical method is also studied to deposit diamond-like carbon films on copper substrates. However, films deposited by the cathodic route have poor adhesion and quality compared to anodically deposited films. It is also possible to grow diamond phase on copper substrates using acetylene in liquid ammonia via electrodeposition route. An electrochemical method is proposed for boron doping into DLC films.
Date: August 2004
Creator: Vavilala, Suma
System: The UNT Digital Library
Thermodynamics of Mobile Order Theory: Solubility and Partition Aspects (open access)

Thermodynamics of Mobile Order Theory: Solubility and Partition Aspects

The purpose of this thesis is to analyze the thermochemical properties of solutes in nonelectrolyte pure solvents and to develop mathematical expressions with the ability to describe and predict solution behavior using mobile order theory. Solubilities of pesticides (monuron, diuron, and hexachlorobenzene), polycyclic aromatic hydrocarbons (biphenyl, acenaphthene, and phenanthrene), and the organometallic ferrocene were studied in a wide array of solvents. Mobile order theory predictive equations were derived and percent average absolute deviations between experimental and calculated mole fraction solubilities for each solute were as follows: monuron in 21 non-alcoholic solvents (48.4%), diuron in 28 non-alcoholic solvents (60.1%), hexachlorobenzene (210%), biphenyl (13.0%), acenaphthene (37.8%), phenanthrene (41.3%), and ferrocene (107.8%). Solute descriptors using the Abraham solvation model were also calculated for monuron and diuron. Coefficients in the general solvation equation were known for all the solvents and solute descriptors calculated using multilinear regression techniques.
Date: August 2004
Creator: De Fina, Karina M.
System: The UNT Digital Library
Synthesis and characterization of diphosphine ligand substituted osmium and ruthenium clusters. (open access)

Synthesis and characterization of diphosphine ligand substituted osmium and ruthenium clusters.

The kinetics for the bridge-to-chelate isomerization of the dppe ligand in H4Ru4(CO)10(dppe) have been investigated by UV-vis and NMR spectroscopies over the temperature range of 308-328 K. The isomerization of the ligand-bridged cluster 1,2-H4Ru4(CO)10(dppe) was found to be reversible by 31P NMR spectroscopy, affording a Keq = 15.7 at 323 K in favor of the chelating dppe isomer. The forward (k1) and reverse (k-1) first-order rate constants for the reaction have been measured in different solvents and in the presence of ligand trapping agents (CO and PPh3). On the basis of the activation parameters and reaction rates that are unaffected by added CO and PPh3, a sequence involving the nondissociative migration of a phosphine moiety and two CO groups between basal ruthenium centers is proposed and discussed. The substitution of the MeCN ligands in the activated cluster 1,2-Os3(CO)10(MeCN)2 by the diphosphine ligands dppbz proceeds rapidly at room temperature to furnish a mixture of bridging and chelating Os3(CO)10(dppbz) isomers and the ortho-metalated product HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C4H4]. Thermolysis of the bridging isomer 1,2-Os3(CO)10(dppbz) under mild conditions gives the chelating isomer 1,1-Os3(CO)10(dppbz), molecular structure of both the isomers have been determined by X-ray crystallography. The kinetics for the ligand isomerization has been investigated by UV-vis …
Date: August 2007
Creator: Kandala, Srikanth
System: The UNT Digital Library

Interfacial Studies of Bimetallic Corrosion in Copper/Ruthenium Systems and Silicon Surface Modification with Organic and Organometallic Chemistry

Access: Use of this item is restricted to the UNT Community
To form Cu interconnects, dual-damascene techniques like chemical mechanical planarization (CMP) and post-CMP became inevitable for removing the "overburden" Cu and for planarizing the wafer surface. During the CMP processing, Cu interconnects and barrier metal layers experience different electrochemical interactions depending on the slurry composition, pH, and ohmic contact with adjacent metal layers that would set corrosion process. Ruthenium as a replacement of existing diffusion barrier layer will require extensive investigation to eliminate or control the corrosion process during CMP and post CMP. Bimetallic corrosion process was investigated in the ammonium citrate (a complexing agent of Cu in CMP solutions) using micro test patterns and potentiodynamic measurements. The enhanced bimetallic corrosion of copper observed is due to noble behavior of the ruthenium metal. Cu formed Cu(II)-amine and Cu(II)-citrate complexes in alkaline and acidic solutions and a corrosion mechanism has been proposed. The currently used metallization process (PVD, CVD and ALD) require ultra-high vacuum and are expensive. A novel method of Si surface metallization process is discussed that can be achieved at room temperature and does not require ultra-high vacuum. Ruthenation of Si surface through strong Si-Ru covalent bond formation is demonstrated using different ruthenium carbonyl compounds. RBS analysis accounted for …
Date: August 2006
Creator: Nalla, Praveen Reddy
System: The UNT Digital Library

Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.

Access: Use of this item is restricted to the UNT Community
An iodine surface layer has been prepared on Ru(poly) and Ru(0001) electrodes by exposure to iodine vapor in UHV and polarizing in a 0.1 M HClO4/0.005 M KI solution, respectively. A saturation coverage of I on a Ru(poly) electrode passivates the Ru surface against significant hydroxide, chemisorbed oxygen or oxide formation during exposure to water vapor over an electrochemical cell in a UHV-electrochemistry transfer system. Immersion of I-Ru(poly) results in greater hydroxide and chemisorbed oxygen formation than water vapor exposure, but an inhibition of surface oxide formation relative that of the unmodified Ru(poly) surface is still observed. Studies with combined electrochemical and XPS techniques show that the iodine surface adlayer remained on top of the surface after cycles of overpotential electrodeposition/dissolution of copper on both Ru(poly) and Ru(0001) electrodes. These results indicate the potential bifunctionality of iodine layer to both passivate the Ru surface in the microelectronic processing and to act as a surfactant for copper electrodeposition. The electrodeposition of Cu on Ru(0001) or polycrystalline Ru was studied using XPS with combined ultrahigh vacuum/electrochemistry methodology (UHV-EC) in 0.1 M HClO4 with Cu(ClO4)2 concentrations ranging from 0.005 M to 0.0005 M, and on polycrystalline Ru in a 0.05M H2SO4/0.005 M CuSO4/0.001 …
Date: August 2005
Creator: Lei, Jipu
System: The UNT Digital Library

The Revival of Electrochemistry: Electrochemical Deposition of Metals in Semiconductor Related Research

Access: Use of this item is restricted to the UNT Community
Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V versus Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which involves sticking the scotch tape on the sample, then peeling off the tape and observing if the copper film peels off or not. Characterization by scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicated that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics does not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small …
Date: August 2005
Creator: Wang, Chen
System: The UNT Digital Library

Modeling wild type and mutant glutathione synthetase.

Access: Use of this item is restricted to the UNT Community
Glutathione syntethase (GS) is an enzyme that belongs to the ATP-grasp superfamily and catalyzes the second step in the biosynthesis of glutathione. GS has been purified and sequenced from a variety of biological sources; still, its exact mechanism is not fully understood. Four highly conserved residues were identified in the binding site of human GS. Additionally, the G-loop residues that close the active site during catalysis were found to be conserved. Since these residues are important for catalysis, their function was studied computationally by site-directed mutagenesis. Starting from the reported crystal structure of human GS, different conformations for the wild type and mutants were obtained using molecular dynamics technique. The key interactions between residues and ligands were detected and found to be essential for enzyme activity.
Date: August 2004
Creator: Dinescu, Adriana
System: The UNT Digital Library
Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects (open access)

Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects

Experimental mole fraction solubilities of several carboxylic acids (2-methoxybenzoic acid, 4-methoxybenzoic acid, 4-nitrobenzoic acid, 4-chloro-3-nitrobenzoic acid, 2-chloro-5-nitrobenzoic acid,2-methylbenzoic acid and ibuprofen) and 9-fluorenone, thianthrene and xanthene were measured in a wide range of solvents of varying polarity and hydrogen-bonding characteristics. Results of these measurements were used to calculate gas-to-organic solvent and water-to-organic solvent solubility ratios, which were then substituted into known Abraham process partitioning correlations. The molecular solute descriptors that were obtained as the result of these computations described the measured solubility data to within an average absolute deviation of 0.2 log units. The calculated solute descriptors also enable one to estimate many chemically, biologically and pharmaceutically important properties for the ten solutes studied using published mathematical correlations.
Date: August 2006
Creator: Stovall, Dawn Michele
System: The UNT Digital Library
Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores (open access)

Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores

Two major topics that involve synthetic strategies to enhance the phosphorescence of organic and inorganic luminophores have been investigated. The first topic involves, the photophysical and photochemical properties of the gold (I) complexes LAuIX (L = CO, RNC where R = alkyl or aryl group; X = halide or pseudohalide), which have been investigated and found to exhibit Au-centered phosphorescence and tunable photochemical reactivity. The investigations have shown a clear relationship between the luminescence energies and association modes. We have also demonstrated for the first time that aurophilic bonding and the ligand p-acceptance can sensitize the photoreactivity of Au(I) complexes. The second topic involves conventional organic fluorophores (arenes), which are made to exhibit room-temperature phosphorescence that originates from spin-orbit coupling owing to either an external or internal heavy atom effect in systematically designed systems that contain d10 metals. Facial complexation of polycyclic arenes to tris[{m-(3,4,5,6-tetrafluorophenylene)}mercury(II)], C18F12Hg3 (1) results in crystalline adducts that exhibit bright RGB (red-green-blue) phosphorescence bands at room temperature. This arene-centered phosphorescence is always accompanied by a reduction of the triplet excited state lifetime due to its sensitization by accelerating the radiative instead of the non-radiative decay. The results of both topics are significant for rational design of …
Date: August 2006
Creator: El-Bjeirami, Oussama
System: The UNT Digital Library
Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces (open access)

Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces

Copper under-potential deposition (UPD) on iridium was studied due to important implications it presents to the semiconductor industry. Copper UPD allows controlled superfilling on sub-micrometer trenches; iridium has characteristics to prevent copper interconnect penetration into the surrounding dielectric. Copper UPD is not favored on iridium oxides but data shows copper over-potential deposition when lower oxidation state Ir oxide is formed. Effect of anions in solution on silver UPD at platinum (Pt) electrodes was studied with the electrochemical quartz crystal microbalance. Silver UPD forms about one monolayer in the three different electrolytes employed. When phosphoric acid is used, silver oxide growth is identified due to presence of low coverage hydrous oxide species at potentials prior to the monolayer oxide region oxide region.
Date: August 2006
Creator: Flores Araujo, Sarah Cecilia
System: The UNT Digital Library

Studies of spin alignment in ferrocenylsilane compounds and in regiospecific oxidation reactions of 1,9-dimethylpentacyclo [5.4.0.02,6.03,10.05,9]undecane-8,11-dione.

Access: Use of this item is restricted to the UNT Community
Part I. The syntheses of a series of stable ferrocenylsilane compounds and their corresponding polyradical cations are reported. Electron spin properties of these molecules were investigated by cyclic voltammetry, ESR, and magnetic susceptibility measurements. All the compounds presented, showed significant electronic communication (>100 mV) between the redox centers by CV. Part II. Baeyer-Villiger oxidation of (1,9-dimethyl-PCU-8,11-dione) was performed using m-chloroperoxybenzoic acid in 1:2 molar ratios. The product obtained was the corresponding dilactone 113. The structure of the reaction products was established unequivocally via single crystal X-ray diffraction methods. The reaction of the 1,9-dimethyl-PCU-8,11-dione with 1:1 molar ratio of m-chloroperoxybenzoic acid produced again the dilactone 113, and not the expected monolactone 114. Ceric ammonium nitrate (CAN) promoted oxidation reaction of 1,9-dimethyl-PCU-8,11-dione afforded a mixture of dimethylated lactones, which indicated unique reaction mechanism pathways. These individual isomers, 115 and 116, have been isolated from these mixtures via column chromatography by using silica gel as adsorbent followed by fractional recrystallization of individual chromatography fractions. Structures of these pure products have been established unequivocally by application of single crystal X-ray crystallographic methods.
Date: August 2006
Creator: Atim, Silvia
System: The UNT Digital Library
The synthesis and study of poly(N-isopropylacrylamide)/poly(acrylic acid) interpenetrating polymer network nanoparticle hydrogels. (open access)

The synthesis and study of poly(N-isopropylacrylamide)/poly(acrylic acid) interpenetrating polymer network nanoparticle hydrogels.

Homogeneous hydrogels made of an interpenetrating network of poly(N-isopropylacrylamide) (PNIPAm) and poly(acrylic acid) (PAAc) are synthesized by a two-step process; first making PNIPAm hydrogels and then interpenetrating acrylic acid throughout the hydrogel through polymerization. The kinetic growth of the IPN is plotted and an equation is fitted to the data. When diluted to certain concentrations in water, the hydrogels show reversible, inverse thermal gelation at about 34°C. This shows unique application to the medical field, as the transition is just below body temperature. A drug release experiment is performed using high molecular weight dyes, and a phase diagram is created through observation of the purified, concentrated gel at varying concentrations and temperatures.
Date: August 2006
Creator: Crouch, Stephen Wallace
System: The UNT Digital Library
Reducing the Computational Cost of Ab Initio Methods (open access)

Reducing the Computational Cost of Ab Initio Methods

In recent years, advances in computer technology combined with new ab initio computational methods have allowed for dramatic improvement in the prediction of energetic properties. Unfortunately, even with these advances, the extensive computational cost, in terms of computer time, memory, and disk space of the sophisticated methods required to achieve chemical accuracy - defined as 1 kcal/mol from reliable experimental data effectively - limits the size of molecules [i.e. less than 10-15 non-hydrogen atoms] that can be studied. Several schemes were explored to help reduce the computational cost while still maintaining chemical accuracy. Specifically, a study was performed to assess the accuracy of ccCA to compute atomization energies, ionization potentials, electron affinities, proton affinities, and enthalpies of formation for third-row (Ga-Kr) containing molecules. Next, truncation of the correlation consistent basis sets for the hydrogen atom was examined as a possible means to reduce the computational cost of ab initio methods. It was determined that energetic properties could be extrapolated to the complete basis set (CBS) limit utilizing a series of truncated hydrogen basis sets that was within 1 kcal/mol of the extrapolation of the full correlation consistent basis sets. Basis set truncation for the hydrogen atom was then applied to …
Date: August 2008
Creator: Mintz, Benjamin
System: The UNT Digital Library