Language

Evaluating Tree Seedling Survival and Growth in a Bottomland Old-field Site: Implications for Ecological Restoration (open access)

Evaluating Tree Seedling Survival and Growth in a Bottomland Old-field Site: Implications for Ecological Restoration

In order to assess the enhancement of seedling survival and growth during drought conditions, five-hundred bare-root seedlings each of Shumard oak (Quercus shumardii Buckl.) and green ash (Fraxinus pennsylvanica Marsh.) were planted each with four soil amendments at a Wildlife Management Area in Lewisville, Texas. The treatments were a mycorrhizal inoculant, mulch fabric, and two superabsorbent gels (TerraSorb® and DRiWATER®). Survival and growth measurements were assessed periodically for two years. Research was conducted on vegetation, soil, and site history for baseline data. Both superabsorbent gels gave significant results for Shumard oak survival, and one increased green ash diameter. For overall growth, significant results were found among DRiWATER®, mycorrhizae, and mulch treatments.
Date: August 2007
Creator: Boe, Brian Jeffrey
System: The UNT Digital Library
Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft. (open access)

Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft.

In order to understand the structural changes in myosin S1, fluorescence polarization and computational dynamics simulations were used. Dynamics simulations on the S1 motor domain indicated that significant flexibility was present throughout the molecular model. The constrained opening versus closing of the 50 kDa cleft appeared to induce opposite directions of movement in the lever arm. A sequence called the "strut" which traverses the 50 kDa cleft and may play an important role in positioning the actomyosin binding interface during actin binding is thought to be intimately linked to distant structural changes in the myosin's nucleotide cleft and neck regions. To study the dynamics of the strut region, a method of fluorescent labeling of the strut was discovered using the dye CY3. CY3 served as a hydrophobic tag for purification by hydrophobic interaction chromatography which enabled the separation of labeled and unlabeled species of S1 including a fraction labeled specifically at the strut sequence. The high specificity of labeling was verified by proteolytic digestions, gel electrophoresis, and mass spectroscopy. Analysis of the labeled S1 by collisional quenching, fluorescence polarization, and actin-activated ATPase activity were consistent with predictions from structural models of the probe's location. Although the fluorescent intensity of the …
Date: August 2007
Creator: Gawalapu, Ravi Kumar
System: The UNT Digital Library
Bioaccumulation of Triclocarban, Triclosan, and Methyl-triclosan in a North Texas Wastewater Treatment Plant Receiving Stream and Effects of Triclosan on Algal Lipid Synthesis. (open access)

Bioaccumulation of Triclocarban, Triclosan, and Methyl-triclosan in a North Texas Wastewater Treatment Plant Receiving Stream and Effects of Triclosan on Algal Lipid Synthesis.

Triclosan (TCS) and triclocarban (TCC), widely used antimicrobial agents found in numerous consumer products, are incompletely removed by wastewater treatment plant (WWTP) processing. Methyl-triclosan (M-TCS) is a more lipophilic metabolite of its parent compound, TCS. The focus of this study was to quantify bioaccumulation factors (BAFs) for TCS, M-TCS, and TCC in Pecan creek, the receiving stream for the City of Denton, Texas WWTP by using field samples mostly composed of the alga Cladophora sp. and the caged snail Helisoma trivolvis as test species. Additionally, TCS effects on E. coli and Arabidopsis have been shown to reduce fatty acid biosynthesis and total lipid content by inhibiting the trans-2 enoyl- ACP reductase. The lipid synthesis pathway effects of TCS on field samples of Cladophora spp. were also investigated in this study by using [2-14C]acetate radiolabeling procedures. Preliminary results indicate high TCS concentrations are toxic to lipid biosynthesis and reduce [2-14C]acetate incorporation into total lipids. These results have led to the concern that chronic exposure of algae in receiving streams to environmentally relevant TCS concentrations might affect their nutrient value. If consumer growth is limited, trophic cascade strength may be affected and serve to limit population growth and reproduction of herbivores in …
Date: August 2007
Creator: Coogan, Melinda Ann
System: The UNT Digital Library
Gene Expression Profiling of the nip Mutant in Medicago truncatula (open access)

Gene Expression Profiling of the nip Mutant in Medicago truncatula

The study of root nodule symbiosis between nitrogen-fixing bacteria and leguminous plant species is important because of the ability to supplement fixed nitrogen fertilizers and increase plant growth in poor soils. Our group has isolated a mutant called nip in the model legume Medicago truncatula that is defective in nodule symbiosis. The nip mutant (numerous infections with polyphenolics) becomes infected by Sinorhizobium meliloti but then accumulates polyphenolic defense compounds in the nodule and fails to progress to a stage where nitrogen fixation can occur. Analysis of the transcriptome of nip roots prior to inoculation with rhizobia was undertaken using Affymetric Medicago Genome Array microarrays. The total RNA of 5-day old uninoculated seedlings was analyzed in triplicate to screen for the NIP gene based on downregulated transcript levels in the mutant as compared to wild type. Further microarray data was generated from 10 days post inoculation (dpi) nip and wild type plants. Analysis of the most highly downregulated transcripts revealed that the NIP gene was not identifiable based on transcript level. Putative gene function was assigned to transcripts with altered expression patterns in order to characterize the nip mutation phenotypically as inferred from the transcriptome. Functional analysis revealed a large number …
Date: August 2007
Creator: McKethan, Brandon Lee
System: The UNT Digital Library
Stream water quality corridor assessment and management using spatial analysis techniques: Introduction, evaluation, and implementation of the WQCM model. (open access)

Stream water quality corridor assessment and management using spatial analysis techniques: Introduction, evaluation, and implementation of the WQCM model.

The rapid development of once-rural landscapes often produces detrimental effects on surface water quality entering local reservoirs through vulnerable stream channels. This study presents a methodology that incorporates geographic information systems (GIS) and remote sensing techniques for the creation of a stream corridor evaluation mechanism, coined the water quality corridor management (WQCM) model. Specifically, the study focuses on determining the viability of the WQCM model in assessing the stream corridor conditions within a northern Denton County pilot study region. These results will aid in the prediction and evaluation of the quality of stream water entering reservoirs that serve as the primary drinking water source for local municipalities.
Date: August 2007
Creator: English, April R.
System: The UNT Digital Library
Evaluation of Zinc Toxicity Using Neuronal Networks on Microelectrode Arrays: Response Quantification and Entry Pathway Analysis (open access)

Evaluation of Zinc Toxicity Using Neuronal Networks on Microelectrode Arrays: Response Quantification and Entry Pathway Analysis

Murine neuronal networks, derived from embryonic frontal cortex (FC) tissue grown on microelectrode arrays, were used to investigate zinc toxicity at concentrations ranging from 20 to 2000 mM total zinc acetate added to the culture medium. Continual multi-channel recording of spontaneous action potential generation allowed a quantitative analysis of the temporal evolution of network spike activity generation at specific zinc acetate concentrations. Cultures responded with immediate concentration-dependent excitation lasting from 5 to 50 min, consisting of increased spiking and enhanced, coordinated bursting. This was followed by irreversible activity decay. The time to 50% and 90% activity loss was concentration dependent, highly reproducible, and formed linear functions in log-log plots. Network activity loss generally preceded morphological changes. 20% cell swelling was correlated with 50% activity loss. Cultures pretreated with the GABAA receptor antagonists bicuculline (40 mM) and picrotoxin (1 mM) lacked the initial excitation phase. This suggests that zinc-induced excitation may be mediated by interfering with GABA inhibition. Partial network protection was achieved by stopping spontaneous activity with either tetrodotoxin (200 nM) or lidocaine (250 mM). However, recovery was not complete and slow deterioration of network activity continued over 6 hrs. Removal of zinc by early medium changes showed irreversible, catastrophic …
Date: August 2007
Creator: Parviz, Maryam
System: The UNT Digital Library