3,511 Matching Results

Results open in a new window/tab.

Chemical reaction rates using the semiclassical Van-Vleck initialvalue representation (open access)

Chemical reaction rates using the semiclassical Van-Vleck initialvalue representation

A semiclassical IVR formulation using the Van-Vleck propagator has been used to calculate the flux correlation function and thereby reaction rate constants. This Van-Vleck formulation of the flux-flux correlation function is computationally as simple as the classical Wigner model. However unlike the latter, it has the ability to capture quantum interference/coherence effects. Classical trajectories are evolved starting from the dividing surface that separates reactants and products, and are evolved negatively in time. This formulation has been tested on model problems ranging from the Eckart barrier, double well to the collinear H + H{sub 2}.
Date: November 29, 2006
Creator: Venkataraman, Charulatha & Miller, William H.
System: The UNT Digital Library
DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection (open access)

DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection

The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. The last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using …
Date: April 21, 2006
Creator: Riot, V; Coffee, K; Gard, E; Fergenson, D; Ramani, S & Steele, P
System: The UNT Digital Library
OEDGE Modeling of the DIII-D H-Mode 13CH4 Puffing Experiment (open access)

OEDGE Modeling of the DIII-D H-Mode 13CH4 Puffing Experiment

Use of carbon in tokamaks leads to a serious tritium retention issue due to co-deposition. To further investigate the processes involved, a detached ELMy H-mode (6.5 MW NBI) experiment was performed on DIII-D in which {sup 13}CH{sub 4} was puffed into the main vessel through the toroidally symmetric pumping plenum at the top of lower single-null discharges. Subsequently, the {sup 13}C content of tiles taken from the vessel wall was measured. The interpretive OEDGE code was used to model the results. The {sup 13}C deposition pattern could be reproduced, in general shape and magnitude, by assuming in the code the existence of a parallel flow and a radial pinch in the scrape-off layer. Parallel flows of Mach {approx} 0.3 toward the inner divertor and a radial pinch {approx}10 to 20 m/s (+ R-direction) were found to yield {sup 13}C deposition comparable to the experiment.
Date: June 1, 2006
Creator: Elder, J. D.; McLean, A. G.; Stangeby, P. C.; Allen, S. L.; Boedo, J. C.; Bray, B. D. et al.
System: The UNT Digital Library
Measurement of the relaxation time of hot electrons in laser-solid interaction at relativistic laser intensities (open access)

Measurement of the relaxation time of hot electrons in laser-solid interaction at relativistic laser intensities

The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.
Date: August 22, 2006
Creator: Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B et al.
System: The UNT Digital Library
Application of the TraPPE force field to predicting isothermal pressure-volume curves at high pressures and high temperatures (open access)

Application of the TraPPE force field to predicting isothermal pressure-volume curves at high pressures and high temperatures

Knowledge of the thermophysical properties of materials at extreme pressure and temperature conditions is essential for improving our understanding of many planetary and detonation processes. Significant gaps in what is known about the behavior of materials at high density and high temperature exist, largely due to the limitations and dangers of performing experiments at the necessary extreme conditions. Modeling these systems through the use of equations of state and particle-based simulation methods significantly extends the range of pressures and temperatures that can be safely studied. The reliability of such calculations depends on the accuracy of the models used. Here we present an assessment of the united-atom version of the TraPPE (Transferable Potentials for Phase Equilibria) force field and single-site exp-6 representations for methane, methanol, oxygen, and ammonia at extreme conditions. As shown by Monte Carlo simulations in the isobaric-isothermal ensemble, the TraPPE models, despite being parameterized to the vapor-liquid coexistence curve (i.e. relatively mild conditions), perform remarkably well in the high pressure/high temperature regime. The single-site exp-6 models can fit experimental data in the high pressure/temperature regime very well, but the parameters are less transferable to ambient conditions.
Date: May 19, 2006
Creator: Eggimann, B L; Siepmann, J I & Fried, L E
System: The UNT Digital Library
Process Control Minitoring by Stress Response (open access)

Process Control Minitoring by Stress Response

Environmental contamination with a variety of pollutants hasprompted the development of effective bioremediation strategies. But howcan these processes be best monitored and controlled? One avenue underinvestigation is the development of stress response systems as tools foreffective and general process control. Although the microbial stressresponse has been the subject of intensive laboratory investigation, theenvironmental reflection of the laboratory response to specific stresseshas been little explored. However, it is only within an environmentalcontext, in which microorganisms are constantly exposed to multiplechanging environmental stresses, that there will be full understanding ofmicrobial adaptive resiliency. Knowledge of the stress response in theenvironment will facilitate the control of bioremediation and otherprocesses mediated by complex microbial communities.
Date: April 17, 2006
Creator: Hazen, Terry C. & Stahl, David A.
System: The UNT Digital Library
MCNP Comparison With Point Source Measurements From a Portable HPGe System (open access)

MCNP Comparison With Point Source Measurements From a Portable HPGe System

The Ortec trans-SPEC is a portable gamma ray spectrometer which is approximately 10.4 kg in total weight and 37 cm × 16 cm × 32 cm in overall size It utilizes a P-type 50 mm diameter and 30 mm height coaxial HPGe detector and has more than 3 hours of battery life when fully charged. This paper details the experimental agreement found for one of these detector units and that of MCNP5 [1] calculations. The purpose of carrying out this work is to evaluate the potential utility of the spectrometer for emergency response (consequence management) applications.
Date: January 1, 2006
Creator: Hayes, Robert
System: The UNT Digital Library
Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16 (open access)

Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and …
Date: March 1, 2006
Creator: Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C. et al.
System: The UNT Digital Library
Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries (open access)

Development of a Fan-Filter Unit Test Standard, Laboratory Validations, and its Applications across Industries

Lawrence Berkeley National Laboratory (LBNL) is now finalizing the Phase 2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method developed at LBNL.[1][2][3] Fan-filter units deliver re-circulated air and provide particle filtration control for clean environments. Much of the energy in cleanrooms (and minienvironments) is consumed by 2-foot x 4-foot (61-cm x 122-cm) or 4-foot x 4-foot (122-cm x 122-cm) fan-filter units that are typically located in the ceiling (25-100% coverage) of cleanroom controlled environments. Thanks to funding support by the California Energy Commission's Industrial Program of the Public Interest Energy Research (PIER) Program, and significant participation from manufacturers and users of fan-filter units from around the world, LBNL has developed and performed a series of standard laboratory tests and reporting on a variety of 2-foot x 4-foot (61-cm x 122-cm) fan-filter units (FFUs). Standard laboratory testing reports have been completed and reported back to anonymous individual participants in this project. To date, such reports on standard testing of FFU performance have provided rigorous and useful data for suppliers and end users to better understand, and more importantly, to quantitatively characterize performance of FFU products …
Date: October 20, 2006
Creator: Xu, Tengfang
System: The UNT Digital Library
Calculation of Radiative Corrections to Hyperfine Splitting in p1/2 States (open access)

Calculation of Radiative Corrections to Hyperfine Splitting in p1/2 States

Techniques to calculate one-loop radiative corrections to hyperfine splitting including binding corrections to all orders have been developed in the last decade for s states of atoms and ions. In this paper these methods are extended to p{sub 1/2} states for three cases. In the first case, the point-Coulomb 2p{sub 1/2} hyperfine splitting is treated for the hydrogen isoelectronic sequence, and the lowest order result, {alpha}/4{pi} E{sub F}, is shown to have large binding corrections at high Z. In the second case, neutral alkalis are considered. In the third case, hyperfine splitting of the 2p{sub 1/2} state of lithium-like bismuth is treated. In the latter two cases, correlation corrections are included and, in addition, the point is stressed that uncertainties associated with nuclear structure, which complicate comparison with experiment for s states, are considerably reduced because of the smaller overlap with the nucleus.
Date: September 20, 2006
Creator: Sapirstein, J & Cheng, K T
System: The UNT Digital Library
Customer Response to RTP in Competitive Markets: A Study ofNiagara Mohawk's Standard Offer Tariff (open access)

Customer Response to RTP in Competitive Markets: A Study ofNiagara Mohawk's Standard Offer Tariff

Utilizing load, price, and survey data for 119 largecustomers that paid competitively determined hourly electricity pricesannounced the previous day between 2000 and 2004, this study providesinsight into the factors that determine the intensity of price response.Peak and off-peak electricity can be: perfect complements, substitutes,or substitutes where high peak prices cause temporary disconnection fromthe grid, as for some firms with on-site generation. The averageelasticity of substitution is 0.11. Thirty percent of the customers usepeak and off-peak electricity in fixed proportions. The 18 percent withelasticities greater than 0.10 provide 75 percent of the aggregate priceresponse. In contrast to Industrial customers, Commercial/Retail andGovernment/Education customers are more price responsive on hot days andwhen the ratio of peak to off-peak prices is high. Price responsivenessis not substantially reduced when customers operate near peak usage.Diversity of customer circumstances and price response suggest dynamicpricing is suited for some, but not all customers.
Date: June 1, 2006
Creator: Boisvert, Richard N.; Cappers, Peter; Goldman, Charles; Neenan,Bernie & Hopper, Nicole
System: The UNT Digital Library
A Local Corrections Algorithm for Solving Poisson's Equation inThree Dimensions (open access)

A Local Corrections Algorithm for Solving Poisson's Equation inThree Dimensions

We present a second-order accurate algorithm for solving thefree-space Poisson's equation on a locally-refined nested grid hierarchyin three dimensions. Our approach is based on linear superposition oflocal convolutions of localized charge distributions, with the nonlocalcoupling represented on coarser grids. There presentation of the nonlocalcoupling on the local solutions is based on Anderson's Method of LocalCorrections and does not require iteration between different resolutions.A distributed-memory parallel implementation of this method is observedto have a computational cost per grid point less than three times that ofa standard FFT-based method on a uniform grid of the same resolution, andscales well up to 1024 processors.
Date: October 30, 2006
Creator: McCorquodale, Peter; Colella, Phillip; Balls, Gregory T. & Baden,Scott B.
System: The UNT Digital Library
TOUGH+/GasH20 study of the effects of a heat source buried in theMartian permafrost (open access)

TOUGH+/GasH20 study of the effects of a heat source buried in theMartian permafrost

We use TOUGH+/GasH2O to study the effects of a heat sourceburied in the Martian permafrost to evaluate the possibility ofestablishing a wet zone of liquid water, in which terrestrialmicroorganisms could survive and multiply. Analysis of the problemindicates that (1) only a limited permafrost volume (not exceeding 0.35 min radius) is affected, (2) a "wet" zone with limited amounts of liquidwater de-velops (not exceeding 8 and 0.7 kg for a 250 W and a 62.5 Wsource, respectively), (3) the wet zone per-sists for a long time,becomes practically stationary after t = 20 sols because of venting intothe Martian atmosphere, and its thickness is limited and decreases slowlyover time, (4) a "dry" zone (where SG>0.9) evolves, continues toexpand (albeit slowly) with time, but its extent remains limited, and (5)the ice front surrounding the wet zone is self-sharpening. For a range ofinitial conditions investigated, evolution of the liquid water massoccurs at approximately the same rate, reaches roughly the same maximum,and occurs at about the same time (10 to 20 sols; 1 sol = 24.39hours).
Date: May 12, 2006
Creator: Moridis, George J. & Pruess, Karsten
System: The UNT Digital Library
Effect of pressure on the crystal structure of ettringite (open access)

Effect of pressure on the crystal structure of ettringite

X-ray diffraction and infrared data have been collected froma sample of ettringite from ambient pressure to 6.4 GPa. The sample wasfound to reversibly transform to an amorphous phase at 3 GPa. Theisothermal bulk modulus of ettringite was found to be 27(7) GPa and theincompressibilities of the lattice parameters were found to be 71(30) GPaalong a and 108(36) GPa along c.
Date: December 8, 2006
Creator: Clark, Simon M.; Colas, Bruno; Kunz, Martin; Speziale, Sergio & Monteiro, Paulo J.M.
System: The UNT Digital Library
Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism (open access)

Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in …
Date: June 12, 2006
Creator: Richardson, J; Yuldashev, B; Labov, S & Knapp, R
System: The UNT Digital Library
Stark Tuning of Donor Electron Spins of Silicon (open access)

Stark Tuning of Donor Electron Spins of Silicon

We report Stark shift measurements for {sup 121}Sb donor electron spins in silicon using pulsed electron spin resonance. Interdigitated metal gates on top of a Sb-implanted {sup 28}Si epi-layer are used to apply electric fields. Two Stark effects are resolved: a decrease of the hyperfine coupling between electron and nuclear spins of the donor and a decrease in electron Zeeman g-factor. The hyperfine term prevails at X-band magnetic fields of 0.35T, while the g-factor term is expected to dominate at higher magnetic fields. A significant linear Stark effect is also resolved presumably arising from strain.
Date: March 23, 2006
Creator: Bradbury, Forrest R.; Tyryshkin, Alexei M.; Sabouret, Guillaume; Bokor, Jeff; Schenkel, Thomas & Lyon, Stephen A.
System: The UNT Digital Library
On prediction of wind-borne plumes with simple models of turbulenttransport (open access)

On prediction of wind-borne plumes with simple models of turbulenttransport

The dispersion of pollutants from the ground by turbulent winds is difficult to model in general. However, for flat homogeneous terrain and steady wind conditions, if the wind profile is modeled with a power-law dependence on height, the advection-dispersion equation has an exact solution. In this paper the analytical solution is compared to a numerical simulation of the coupled air-ground system for a leaking underground gas storage, with a power-law velocity profile that was fit to the logarithmic velocity profile used in the simulation. The two methods produced similar results far from the boundaries, but the boundary conditions had a strong effect; the simulation imposed boundary conditions at the edge of a finite domain while the analytic solution imposes them at infinity. The reverse seepage from air to ground was shown in the simulation to be very small, and the sharp contrast between time scales suggests that air and ground can be modeled separately, with gas emissions from the ground model used as inputs to the air model.
Date: June 21, 2006
Creator: Schwarz, Katherine; Patzek, Tad & Silin, Dmitriy
System: The UNT Digital Library
SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields (open access)

SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields

Magnetic resonance imaging (MRI) has developed into a powerful clinical tool for imaging the human body (1). This technique is based on nuclear magnetic resonance (NMR) of protons (2, 3) in a static magnetic field B{sub 0}. An applied radiofrequency pulse causes the protons to precess about B{sub 0} at their Larmor frequency {nu}{sub 0} = ({gamma}/2{pi})B{sub 0}, where {gamma} is the gyromagnetic ratio; {gamma}/2{pi} = 42.58 MHz/tesla. The precessing protons generate an oscillating magnetic field and hence a voltage in a nearby coil that is amplified and recorded. The application of three-dimensional magnetic field gradients specifies a unique magnetic field and thus an NMR frequency in each voxel of the subject, so that with appropriate encoding of the signals one can acquire a complete image (4). Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems (5). Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. Commercially available 0.2-T systems based on permanent magnets offer both lower cost and a more open access than their higher-field counterparts, at the expense of signal-to-noise-ratio (SNR) and spatial resolution. …
Date: August 14, 2006
Creator: Moessle, Michael; Hatridge, Michael & Clarke, John
System: The UNT Digital Library
Meta-Analyses of the Associations of Respiratory Health Effectswith Dampness and Mold in Homes (open access)

Meta-Analyses of the Associations of Respiratory Health Effectswith Dampness and Mold in Homes

The Institute of Medicine (IOM) of the National Academy of Sciences recently completed a critical review of the scientific literature pertaining to the association of indoor dampness and mold contamination with adverse health effects. In this paper, we report the results of quantitative meta-analysis of the studies reviewed in the IOM report. We developed point estimates and confidence intervals (CIs) to summarize the association of several respiratory and asthma-related health outcomes with the presence of dampness and mold in homes. The odds ratios and confidence intervals from the original studies were transformed to the log scale and random effect models were applied to the log odds ratios and their variance. Models were constructed both accounting for the correlation between multiple results within the studies analyzed and ignoring such potential correlation. Central estimates of ORs for the health outcomes ranged from 1.32 to 2.10, with most central estimates between 1.3 and 1.8. Confidence intervals (95%) excluded unity except in two of 28 instances, and in most cases the lower bound of the CI exceeded 1.2. In general, the two meta-analysis methods produced similar estimates for ORs and CIs. Based on the results of the meta-analyses, building dampness and mold are associated …
Date: January 1, 2006
Creator: Fisk, William J.; Lei-Gomez, Quanhong & Mendell, Mark J.
System: The UNT Digital Library
Disorder and size effects on Kondo interactions and magnetic correlations in CePt2 nanoscrystals (open access)

Disorder and size effects on Kondo interactions and magnetic correlations in CePt2 nanoscrystals

The evolution of the Kondo effect and magnetic correlations with size reduction in CePt{sub 2} nanoparticles (3.1-26 nm) is studied by analysis of the temperature-dependent specific heat and magnetic susceptibility. The antiferromagnetic correlations diminish with size reduction. The Kondo effect predominates at small particle size with trivalent, small Kondo temperature (T{sub K}) magnetic regions coexisting with strongly mixed valent, large T{sub K} nonmagnetic regions. We discuss the role of structural disorder, background density of states and the electronic quantum size effect on the results.
Date: December 12, 2006
Creator: Chen, Y. Y.; Huang, P. H.; Ou, M. N.; Wang, C. R.; Yao, Y. D.; Lee, T. K. et al.
System: The UNT Digital Library
In-situ borehole seismic monitoring of injected CO2 at the FrioSite (open access)

In-situ borehole seismic monitoring of injected CO2 at the FrioSite

The U.S. Dept. of Energy funded Frio Brine Pilot provided an opportunity to test borehole seismic monitoring techniques in a saline formation in southeast Texas. A relatively small amount of CO{sub 2} was injected (about 1600 tons) into a thin injection interval (about 6 m thick at 1500 m depth). Designed tests included time-lapse vertical seismic profile (VSP) and crosswell surveys which investigated the detectability of CO{sub 2} with surface-to-borehole and borehole-to-borehole measurement.
Date: June 1, 2006
Creator: Daley, Thomas M. & Korneev, Valeri A.
System: The UNT Digital Library
Structures in Molecular Clouds: Modeling (open access)

Structures in Molecular Clouds: Modeling

We attempt to predict the observed morphology, column density and velocity gradient of Pillar II of the Eagle Nebula, using Rayleigh Taylor (RT) models in which growth is seeded by an initial perturbation in density or in shape of the illuminated surface, and cometary models in which structure is arises from a initially spherical cloud with a dense core. Attempting to mitigate suppression of RT growth by recombination, we use a large cylindrical model volume containing the illuminating source and the self-consistently evolving ablated outflow and the photon flux field, and use initial clouds with finite lateral extent. An RT model shows no growth, while a cometary model appears to be more successful at reproducing observations.
Date: April 20, 2006
Creator: Kane, J. O.; Mizuta, A.; Pound, M. W.; Remington, B. A. & Ryutov, D. D.
System: The UNT Digital Library
Shear-slip analysis in multiphase fluid-flow reservoir engineeringap plications using TOUGH-FLAC (open access)

Shear-slip analysis in multiphase fluid-flow reservoir engineeringap plications using TOUGH-FLAC

This paper describes and demonstrates the use of the coupledTOUGH-FLAC simulator for geomechanical shear-slip (failure) analysis inmultiphase fluid-flow reservoir-engineering applications. Two approachesfor analyzing shear-slip are described, one using continuum stress-strainanalysis and another using discrete fault analysis. The use of shear-slipanalysis in TOUGH-FLAC is demonstrated on application examples related toCO2 sequestration and geothermal energy extraction. In the case of CO2sequestration, the shear-slip analysis is used to evaluate maximumsustainable CO2-injection pressure under increasing reservoir pressure,whereas in the case of geothermal energy extraction, the shear-slipanalysis is used to study induced seismicity during steam productionunder decreasing reservoir pressure and temperature.
Date: January 15, 2006
Creator: Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg,Curt & Tsang, Chin-Fu
System: The UNT Digital Library
Quantum entanglement of baby universes (open access)

Quantum entanglement of baby universes

We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight.
Date: December 7, 2006
Creator: Essman, Eric P.; Aganagic, Mina; Okuda, Takuya & Ooguri, Hirosi
System: The UNT Digital Library