68 Matching Results

Results open in a new window/tab.

The History Engine: Doing History with Digital Tools (open access)

The History Engine: Doing History with Digital Tools

Article on the History Engine Project, an online archive consisting of thousands of narratives written and contributed by undergraduates.
Date: September 9, 2009
Creator: Nelson, Robert K.; Nesbit, Scott & Torget, Andrew J., 1978-
System: The UNT Digital Library
Light-Front Holography and QCD Hadronization at the Amplitude Level (open access)

Light-Front Holography and QCD Hadronization at the Amplitude Level

Light-front holography allows hadronic amplitudes in the AdS/QCD fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. The AdS coordinate z is identified with an invariant light-front coordinate {zeta} which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schroedinger equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. A new method for computing the hadronization of quark and gluon jets at the amplitude level using AdS/QCD light-front wavefunctions is outlined.
Date: January 9, 2009
Creator: Brodsky, Stanley J. & de Teramond, Guy F.
System: The UNT Digital Library
Dynamic versus Static Hadronic Structure Functions (open access)

Dynamic versus Static Hadronic Structure Functions

'Static' structure functions are the probabilistic distributions computed from the square of the light-front wavefunctions of the target hadron. In contrast, the 'dynamic' structure functions measured in deep inelastic lepton-hadron scattering include the effects of rescattering associated with the Wilson line. Initial- and final-state rescattering, neglected in the parton model, can have a profound effect in QCD hard-scattering reactions, producing single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam-Tung relation in Drell-Yan reactions, nuclear shadowing, and non-universal nuclear antishadowing|novel leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also review how 'direct' higher-twist processes--where a proton is produced in the hard subprocess itself--can explain the anomalous proton-to-pion ratio seen in high centrality heavy ion collisions.
Date: January 9, 2009
Creator: Brodsky, Stanley J.
System: The UNT Digital Library
CEMENTITIOUS BARRIERS MODELING FOR PERFORMANCE ASSESSMENTS OF SHALLOW LAND BURIAL OF LOW LEVEL RADIOACTIVE WASTE - 9243 (open access)

CEMENTITIOUS BARRIERS MODELING FOR PERFORMANCE ASSESSMENTS OF SHALLOW LAND BURIAL OF LOW LEVEL RADIOACTIVE WASTE - 9243

The Cementitious Barriers Partnership (CBP) was created to develop predictive capabilities for the aging of cementitious barriers over long timeframes. The CBP is a multi-agency, multi-national consortium working under a U.S. Department of Energy (DOE) Environmental Management (EM-21) funded Cooperative Research and Development Agreement (CRADA) with the Savannah River National Laboratory (SRNL) as the lead laboratory. Members of the CBP are SRNL, Vanderbilt University, the U.S. Nuclear Regulatory Commission (USNRC), National Institute of Standards and Technology (NIST), SIMCO Technologies, Inc. (Canada), and the Energy Research Centre of the Netherlands (ECN). A first step in developing advanced tools is to determine the current state-of-the-art. A review has been undertaken to assess the treatment of cementitious barriers in Performance Assessments (PA). Representatives of US DOE sites which have PAs for their low level waste disposal facilities were contacted. These sites are the Idaho National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, Nevada Test Site, and Hanford. Several of the more arid sites did not employ cementitious barriers. Of those sites which do employ cementitious barriers, a wide range of treatment of the barriers in a PA was present. Some sites used conservative, simplistic models that even though conservative still showed …
Date: January 9, 2009
Creator: Taylor, G
System: The UNT Digital Library
FUEL CASK IMPACT LIMITER VULNERABILITIES (open access)

FUEL CASK IMPACT LIMITER VULNERABILITIES

Cylindrical fuel casks often have impact limiters surrounding just the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and maintaining lower peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) impacts. Large casks are often certified by analysis only because of the costs associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 Spent Fuel Containment Cask found problems with the design of the impact limiter attachment system. Assumptions in the original Safety Analysis for Packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs.
Date: February 9, 2009
Creator: Leduc, D; Jeffery England, J & Roy Rothermel, R
System: The UNT Digital Library
ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE (open access)

ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE

One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.
Date: January 9, 2009
Creator: Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B & Joshua Gray, J
System: The UNT Digital Library
DEMONSTRATION OF THE NEXT-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS (open access)

DEMONSTRATION OF THE NEXT-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

The first generation of TCAP hydrogen isotope separation process has been in service for tritium separation at the Savannah River Site since 1994. To prepare for replacement, a next-generation TCAP process has been developed. This new process simplifies the column design and reduces the equipment requirements of the thermal cycling system. An experimental twelve-meter column was fabricated and installed in the laboratory to demonstrate its performance. This new design and its initial test results were presented at the 8th International Conference on Tritium Science and Technology and published in the proceedings. We have since completed the startup and demonstration the separation of protium and deuterium in the experimental unit. The unit has been operated for more than 200 cycles. A feed of 25% deuterium in protium was separated into two streams each better than 99.7% purity.
Date: January 9, 2009
Creator: Heung, L; Henry Sessions, H; Steve Xiao, S & Heather Mentzer, H
System: The UNT Digital Library
ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE (open access)

ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, …
Date: January 9, 2009
Creator: Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B & Joshua Gray, J
System: The UNT Digital Library
INTEGRATION OF SYSTEM COMPONENTS AND UNCERTAINTY ANALYSIS - HANFORD EXAMPLES (open access)

INTEGRATION OF SYSTEM COMPONENTS AND UNCERTAINTY ANALYSIS - HANFORD EXAMPLES

{sm_bullet} Deterministic 'One Off' analyses as basis for evaluating sensitivity and uncertainty relative to reference case {sm_bullet} Spatial coverage identical to reference case {sm_bullet} Two types of analysis assumptions - Minimax parameter values around reference case conditions - 'What If' cases that change reference case condition and associated parameter values {sm_bullet} No conclusions about likelihood of estimated result other than' qualitative expectation that actual outcome should tend toward reference case estimate
Date: July 9, 2009
Creator: MI, WOOD
System: The UNT Digital Library
Measurements of Time-Dependent CP Asymmetries in b\to s Penguin Dominated Hadronic B Decays at BaBar (open access)

Measurements of Time-Dependent CP Asymmetries in b\to s Penguin Dominated Hadronic B Decays at BaBar

We report measurements of Time-Dependent CP asymmetries in several b {yields} s penguin dominated hadronic B decays, where New Physics contributions may appear. We find no significant discrepancies with respect to the Standard Model expectations.
Date: December 9, 2009
Creator: Biassoni, Pietro
System: The UNT Digital Library
FEL and Optical Klystron Gain for an Electron Beam with Oscillatory Energy Distribution (open access)

FEL and Optical Klystron Gain for an Electron Beam with Oscillatory Energy Distribution

If the energy spread of a beam is larger then the Pierce parameter, the FEL gain length increases dramatically and the FEL output gets suppressed. We show that if the energy distribution of such a beam is made oscillatory on a small scale, the gain length can be considerably decreased. Such an oscillatory energy distribution is generated by first modulating the beam energy with a laser via the mechanism of inverse FEL, and then sending it through a strong chicane. We show that this approach also works for the optical klystron enhancement scheme. Our analytical results are corroborated by numerical simulations.
Date: December 9, 2009
Creator: Stupakov, G.; Ding, Y. & Huang, Z.
System: The UNT Digital Library
Light-Front Holography, AdS/QCD, and Hadronic Phenomena (open access)

Light-Front Holography, AdS/QCD, and Hadronic Phenomena

AdS/QCD, the correspondence between theories in a modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. We identify the AdS coordinate z with an invariant light-front coordinate {zeta} which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schroedinger equation with a confining potential which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The mapping of electromagnetic and gravitational form factors in AdS space to their corresponding expressions in light-front theory confirms this correspondence. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. The distinction between static structure functions, such as the probability distributions computed from the square of the light-front wavefunctions, versus dynamical structure functions which include the effects of rescattering, is emphasized. A new method for computing the hadronization of quark and …
Date: December 9, 2009
Creator: Brodsky, Stanley J. & de Teramond, Guy F.
System: The UNT Digital Library
ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD (open access)

ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD

Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic …
Date: September 9, 2009
Creator: Kurzeja, R.
System: The UNT Digital Library
MINING INTEGRAL ACTINIDES CROSS SECTIONS FROM REACTOR DATA (open access)

MINING INTEGRAL ACTINIDES CROSS SECTIONS FROM REACTOR DATA

None
Date: September 9, 2009
Creator: RJ, PUIGH
System: The UNT Digital Library
NLO QCD Predictions for W+3 jets (open access)

NLO QCD Predictions for W+3 jets

In this contribution we present results from the NLO computation of the production of a W boson in association with three jets in hadronic collisions. The results are obtained by combining two programs: BlackHat for the virtual one-loop matrix elements and Sherpa for the real-emission contributions. We present results for the Tevatron and the LHC, and address the issue of the choice of a common factorization and renormalization scale for this process.
Date: December 9, 2009
Creator: Maitre, Daniel; U., /Durham; Berger, Carola F.; /MIT; Bern, Zvi; Febres Cordero, Fernando et al.
System: The UNT Digital Library
New View of the QCD Phase Diagram (open access)

New View of the QCD Phase Diagram

Quarkyonic matter is confining but can have densities much larger than 3QCD. Its existence isargued in the large Nc limit of QCD and implies that there are at least three phases of QCD with greatly different bulk properties. These are a Confined Phase of hadrons, a Deconfined Phase ofquarks and gluons, and the Quarkyonic Phase. In the Quarkyonic Phase, the baryon density isaccounted for by a quasi-free gas of quarks, and the the antiquarks and gluons are confined intomesons, glueballs. Quarks near the Fermi surface also are treated as baryons. (In addition tothese phases, there is a color superconducting phase that has vastly different transport properties than the above, but with bulk properties, such as pressure and energy density, that are not greatlydifferent than that of Quarkyonic Matter.)
Date: July 9, 2009
Creator: McLerran, L.
System: The UNT Digital Library
Evaporated Lithium Surface Coatings in NSTX (open access)

Evaporated Lithium Surface Coatings in NSTX

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: 1) plasma density reduction as a result of lithium deposition; 2) suppression of ELMs; 3) improvement of energy confinement in a low-triangularity shape; 4) improvement in plasma performance for standard, high-triangularity discharges; 5) reduction of the required HeGDC time between discharges; 6) increased pedestal electron and ion temperature; 7) reduced SOL plasma density; and 8) reduced edge neutral density.
Date: April 9, 2009
Creator: Kugel, H. W.; Mansfield, D.; Maingi, R.; Bel, M. G.; Bell, R. E.; Allain, J. P. et al.
System: The UNT Digital Library
Amorphous clusters in Co implanted ZnO induced by boron pre-implantation (open access)

Amorphous clusters in Co implanted ZnO induced by boron pre-implantation

We demonstrate the formation of superparamagnetic/ferromagnetic regions within ZnO(0001) single crystals sequently implanted with B and Co. While the pre-implantation with B plays a minor role for the electrical transport properties, its presence leads to the formation of amorphous phases. Moreover, B acts strongly reducing on the implanted Co. Thus, the origin of the ferromagnetic ordering in local clusters with large Co concentration is itinerant d-electrons as in the case of metallic Co. The metallic amorphous phases are non-detectable by common X-ray diffraction.
Date: February 9, 2009
Creator: Potzger, K.; Shalimov, A.; Zhou, S.; Schmidt, H.; Mucklich, A.; Helm, M. et al.
System: The UNT Digital Library
Absolute Bunch Length Measurements by Incoherent Radiation Fluctuation Analysis (open access)

Absolute Bunch Length Measurements by Incoherent Radiation Fluctuation Analysis

By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.
Date: December 9, 2009
Creator: Sannibale, F.; /LBL, Berkeley; Stupakov, G.V.; /SLAC; Zolotorev, M.S.; /LBL, Berkeley et al.
System: The UNT Digital Library
Light-Front Holography and Non-Perturbative QCD (open access)

Light-Front Holography and Non-Perturbative QCD

The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n + L + S = 2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and …
Date: December 9, 2009
Creator: Brodsky, Stanley J. & de Teramond, Guy F.
System: The UNT Digital Library
MADmap: A Massively Parallel Maximum-Likelihood Cosmic Microwave Background Map-Maker (open access)

MADmap: A Massively Parallel Maximum-Likelihood Cosmic Microwave Background Map-Maker

MADmap is a software application used to produce maximum-likelihood images of the sky from time-ordered data which include correlated noise, such as those gathered by Cosmic Microwave Background (CMB) experiments. It works efficiently on platforms ranging from small workstations to the most massively parallel supercomputers. Map-making is a critical step in the analysis of all CMB data sets, and the maximum-likelihood approach is the most accurate and widely applicable algorithm; however, it is a computationally challenging task. This challenge will only increase with the next generation of ground-based, balloon-borne and satellite CMB polarization experiments. The faintness of the B-mode signal that these experiments seek to measure requires them to gather enormous data sets. MADmap is already being run on up to O(1011) time samples, O(108) pixels and O(104) cores, with ongoing work to scale to the next generation of data sets and supercomputers. We describe MADmap's algorithm based around a preconditioned conjugate gradient solver, fast Fourier transforms and sparse matrix operations. We highlight MADmap's ability to address problems typically encountered in the analysis of realistic CMB data sets and describe its application to simulations of the Planck and EBEX experiments. The massively parallel and distributed implementation is detailed and scaling …
Date: June 9, 2009
Creator: Cantalupo, Christopher; Borrill, Julian; Jaffe, Andrew; Kisner, Theodore & Stompor, Radoslaw
System: The UNT Digital Library
Coherent rho 0 photoproduction in bulk matter at high energies (open access)

Coherent rho 0 photoproduction in bulk matter at high energies

The momentum transfer {Delta}k required for a photon to scatter from a target and emerge as a {rho}{sup 0} decreases as the photon energy k rises. For k > 3 x 10{sup 14} eV, {Delta}k is small enough that the interaction cannot be localized to a single nucleus. At still higher energies, photons may coherently scatter elastically from bulk matter and emerge as a {rho}{sup 0}, in a manner akin to kaon regeneration. Constructive interference from the different nuclei coherently raises the cross section and the interaction probability rises linearly with energy. At energies above 10{sup 23} eV, coherent conversion is the dominant process; photons interact predominantly as {rho}{sup 0}. We compute the coherent scattering probabilities in slabs of lead, water and rock, and discuss the implications of the increased hadronic interaction probabilities for photons on ultra-high energy shower development.
Date: January 9, 2009
Creator: Couderc, Elsa & Klein, Spencer
System: The UNT Digital Library
Indications of Conical Emission of Charged Hadrons at the BNL Relativistic HeavyIon Collider (open access)

Indications of Conical Emission of Charged Hadrons at the BNL Relativistic HeavyIon Collider

Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d + Au, and Au + Au collisions at {radical}s{sub NN} = 200 GeV by the STAR experiment. Dijet structures are observed in pp, d + Au and peripheral Au + Au collisions. An additional structure is observed in central Au + Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be {theta} = 1.37 {+-} 0.02(stat){sub -0.07}{sup +0.06}(syst), independent of p{sub {perpendicular}}.
Date: February 9, 2009
Creator: STAR Collaboration
System: The UNT Digital Library
Understanding the mechanism of base development of hydrogen silsesquioxane (open access)

Understanding the mechanism of base development of hydrogen silsesquioxane

There have been numerous studies of electron beam exposed hydrogen silsesquioxane (HSQ) development conditions in order to improve the developer contrast. For TMAH based development, improvements were made by going to higher TMAH normalities and heating the developer. Yang and Berggren showed development of electron beam exposed (HSQ) by NaOH with added Na salts (various anions) significantly improves the contrast. Here, we study the contrast and etching rates of 100 keV exposed HSQ in NaOH in the presence of LiCl, NaCl, and KCl salts and use this as a segway to understand the mechanisms governing contrast during development HSQ development. The basic mechanism of development of HSQ can be understood by comparing to etching of quartz in basic solutions. Hydroxide ions act as nucleophiles which attack silicon. When a silicon-oxygen bond of the Si-O-Si matrix is broken, Si-O{sup -} and Si-OH are formed which can reversibly react to form the original structure. When a Si-H bond is broken via reaction with hydroxide, Si-O{sup -} and H{sub 2} gas are formed. Salts can change the etching rates as a function of dose in a non-linear fashion to increase etch contrast. Figs. 1, 2, and 3 show contrast curves for HSQ developed …
Date: January 9, 2009
Creator: Kim, Jihoon; Chao, Weilun; Liang, Xiaogan; Griedel, Brian D. & Olynick, Deirdre L
System: The UNT Digital Library