Alternative Energy for Higher Education (open access)

Alternative Energy for Higher Education

This project provides educational opportunities creating both a teaching facility and center for public outreach. The facility is the largest solar array in Nebraska. It was designed to allow students to experience a variety of technologies and provide the public with opportunities for exposure to the implementation of an alternative energy installation designed for an urban setting. The project integrates products from 5 panel manufacturers (including monocrystalline, polycrystalline and thin film technologies) mounted on both fixed and tracking structures. The facility uses both micro and high power inverters. The majority of the system was constructed to serve as an outdoor classroom where panels can be monitored, tested, removed and replaced by students. As an educational facility it primarily serves students in the Creighton University and Metropolitan Community College, but it also provides broader educational opportunities. The project includes a real-time “dashboard” and a historical database of the output of individual inverters and the corresponding meteorological data for researcher and student use. This allows the evaluation of both panel types and the feasibility of installation types in a region of the country subject to significant temperature, wind and precipitation variation.
Date: February 22, 2012
Creator: Michael Cherney, PhD
System: The UNT Digital Library
Cascade Reverse Osmosis Air Conditioning System (open access)

Cascade Reverse Osmosis Air Conditioning System

Advanced Research Projects Agency-Energy project sheet summarizing general information about the Building Energy Efficiency Through Innovative Thermodevices (BEETIT) program including critical needs, innovation and advantages, impacts, and contact information. This sheet discusses air conditioning that has increased electrical efficiency as part of the "Cascade Reverse Osmosis and the Absorption Osmosis Cycle" project.
Date: February 22, 2012
Creator: Batelle Memorial Institute
System: The UNT Digital Library
Next-Generation Flywheel Energy Storage: Development of a 100 kWh/100 kW Flywheel Energy Storage Module (open access)

Next-Generation Flywheel Energy Storage: Development of a 100 kWh/100 kW Flywheel Energy Storage Module

GRIDS Project: Beacon Power is developing a flywheel energy storage system that costs substantially less than existing flywheel technologies. Flywheels store the energy created by turning an internal rotor at high speeds—slowing the rotor releases the energy back to the grid when needed. Beacon Power is redesigning the heart of the flywheel, eliminating the cumbersome hub and shaft typically found at its center. The improved design resembles a flying ring that relies on new magnetic bearings to levitate, freeing it to rotate faster and deliver 400% as much energy as today’s flywheels. Beacon Power’s flywheels can be linked together to provide storage capacity for balancing the approximately 10% of U.S. electricity that comes from renewable sources each year.
Date: September 22, 2010
Creator: unknown
System: The UNT Digital Library
Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine (open access)

Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.
Date: February 22, 2010
Creator: unknown
System: The UNT Digital Library
FY 2011 Third Quarter Report Estimate of Historical Aerosol Direct and Indirect Effects (open access)

FY 2011 Third Quarter Report Estimate of Historical Aerosol Direct and Indirect Effects

The global and annual mean aerosol direct and indirect effects estimated from Community Earth System Model (CESM) simulations are -0.06 W m-2 and -1.39 W m-2, respectively.
Date: June 22, 2011
Creator: Koch, D
System: The UNT Digital Library
Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production. (open access)

Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.

Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties …
Date: March 22, 2012
Creator: Prezhdo, Oleg V.
System: The UNT Digital Library
Theoretical Studies of Hydrogen Storage Alloys. (open access)

Theoretical Studies of Hydrogen Storage Alloys.

Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys …
Date: March 22, 2012
Creator: Jonsson, Hannes
System: The UNT Digital Library