Degree Discipline

Language

Mutation of Polaris, an Intraflagellar Transport Protein, Shortens Neuronal Cilia (open access)

Mutation of Polaris, an Intraflagellar Transport Protein, Shortens Neuronal Cilia

Primary cilia are non-motile organelles having 9+0 microtubules that project from the basal body of the cell. While the main purpose of motile cilia in mammalian cells is to move fluid or mucus over the cell surface, the purpose of primary cilia has remained elusive for the most part. Primary cilia are shortened in the kidney tubules of Tg737orpk mice, which have polycystic kidney disease due to ciliary defects. The product of the Tg737 gene is polaris, which is directly involved in a microtubule-dependent transport process called intraflagellar transport (IFT). In order to determine the importance of polaris in the development of neuronal cilia, cilium length and numerical density of cilia were quantitatively assessed in six different brain regions on postnatal days 14 and 31 in Tg737orpk mutant and wildtype mice. Our results indicate that the polaris mutation leads to shortening of cilia as well as decreased percentage of ciliated neurons in all brain regions that were quantitatively assessed. Maintainance of cilia was especially affected in the ventromedial nucleus of the hypothalamus. Furthermore, the polaris mutation curtailed cilium length more severely on postnatal day 31 than postnatal day 14. These data suggests that even after ciliogenesis, intraflagellar transport is necessary …
Date: August 2005
Creator: Mahato, Deependra
System: The UNT Digital Library
Mouse cortical cholinergic neurons: Ontogeny of phenotypes in vivo and in vitro. (open access)

Mouse cortical cholinergic neurons: Ontogeny of phenotypes in vivo and in vitro.

The development of cholinergic neurons in mouse frontal cortex was studied both in vivo and in vitro by immunocytochemistry with an antibody to choline acetyltransferase (ChAT), the enzyme responsible for acetylcholine synthesis. While cortical cholinergic neurons have previously been characterized in rat cortex, up until very recently, intrinsic cortical cholinergic neurons were considered to be absent in mouse, and little is known about their development or phenotypic characteristics. The present study found no ChAT-positive neurons in mouse frontal cortex on postnatal day 0 (P0, the day of birth). On P7 there were few, faintly stained, ChAT-positive neurons. The numerical density of ChAT-positive neurons increased substantially with age, from none on P0, to 9.2 + 1.4 on P7, to 14.8 + 0.9 on P16, and 41.6 + 3.9 in adulthood. Considering that the numerical density of total neurons decreases during this postnatal period, the data represent a marked developmental increase in the percentage of cholinergic neurons. The development of cholinergic neurons showed very similar timelines in rat and mouse frontal cortex. Cultures prepared from mouse frontal cortex on embryonic day 16 were maintained for 25, 76, or 100 days in vitro (div). The percentage of ChAT-positive neurons was considerably higher than …
Date: August 2005
Creator: Coiculescu, Olivia Elena
System: The UNT Digital Library