Degree Discipline

Language

Transgenerational Responses to Environmental Stressors in Vertebrates: From Organisms to Molecules (open access)

Transgenerational Responses to Environmental Stressors in Vertebrates: From Organisms to Molecules

Genomic modifications occur slowly across generations, whereas short-term epigenetic transgenerational inheritance of adaptive phenotypes may be immediately beneficial to large numbers of individuals, acting as a bridge for survival when adverse environments occur. In this study we used dietary exposure to crude oil as an example of an environmental stressor to assess its effects from the molecular to the organismal levels in piscine and avian animal models. In addition, we assessed the role of the parental exposures on their offspring F1 generation. The research developed in this dissertation has contributed to several areas of investigation including molecular biology, animal physiology, and evolutionary biology. The quantitative information from these studies may be utilized to supplement information regarding the proximate and ultimate effects of environmental stressors on fish and bird populations. Furthermore, this information may be used as additional support for understanding the conservation of the responses from the molecular to the whole organismal levels across the vertebrate taxa, as well as their implications for population survival and maintenance. Additionally, the zebrafish (Danio rerio), the Siamese fighting fish (Betta splendens) and the king quail (Coturnix chinensis) have proven to be excellent models to start building a strong basis for understanding the effects …
Date: December 2019
Creator: Martinez Bautista, Naim
System: The UNT Digital Library
Optical Brain Imaging of Motor Cortex to Decode Movement Direction using Cross-Correlation Analysis (open access)

Optical Brain Imaging of Motor Cortex to Decode Movement Direction using Cross-Correlation Analysis

The goal of this study is to determine the intentional movement direction based on the neural signals recorded from the motor cortex using optical brain imaging techniques. Towards this goal, we developed a cross-correlation analysis technique to determine the movement direction from the hemodynamic signals recorded from the motor cortex. Healthy human subjects were asked to perform a two-dimensional hand movement in two orthogonal directions while the hemodynamic signals were recorded from the motor cortex simultaneously with the movements. The movement directions were correlated with the hemodynamic signals to establish the cross-correlation patterns of firings among these neurons. Based on the specific cross-correlation patterns with respect to the different movement directions, we can distinguish the different intentional movement directions between front-back and right-left movements. This is based on the hypothesis that different movement directions can be determined by different cooperative firings among various groups of neurons. By identifying the different correlation patterns of brain activities with each group of neurons for each movement, we can decode the specific movement direction based on the hemodynamic signals. By developing such a computational method to decode movement direction, it can be used to control the direction of a wheelchair for paralyzed patients based …
Date: December 2019
Creator: Lebel, Cynthia
System: The UNT Digital Library