Language

Topics in Hadronic Physics (open access)

Topics in Hadronic Physics

Hadron production cross sections are calculated in the perturbative QCD frame work. Parton distribution functions are obtained from a strip-soliton model. The fragmentation functions are derived from the Lund model of string breaking.
Date: August 1, 2002
Creator: Tang, Alfred
System: The UNT Digital Library
Nonphotochemical Hole-Burning Imaging Studies of In Vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye (open access)

Nonphotochemical Hole-Burning Imaging Studies of In Vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning …
Date: August 1, 2002
Creator: Walsh, Richard Joseph
System: The UNT Digital Library
Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria (open access)

Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll a (BChl a) molecules …
Date: August 1, 2002
Creator: Matsuzaki, Satoshi
System: The UNT Digital Library
High Precision Hypernuclear Spectroscopy Study by the (e,e'K) Reaction (open access)

High Precision Hypernuclear Spectroscopy Study by the (e,e'K) Reaction

Jefferson Lab experiment E89009 is the first experiment to study hypernuclear spectroscopy by (e,e' K{sup +}) reaction. The 12 / LambdaB spectrum was observed from carbon target with the best energy resolution ever achieved from direct measurement of hypernuclear spectrum. The comparisons of the 12 / LambdaB spectrum with theoretical predictions were provided in terms of excitation strength and level separations. The overall excitation is in accord with theoretical calculations. The binding energies of p-shell and s-shell Lambda states were extracted. The photo-production cross section of the 12 / LambdaB ground state was also extracted. The experiment is also the pioneer in detecting scattered electrons at near zero degrees. The benefit and lessons learned from this method was also discussed.
Date: August 1, 2002
Creator: Yuan, Lulin
System: The UNT Digital Library
Design of Surface micromachined Compliant MEMS (open access)

Design of Surface micromachined Compliant MEMS

The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.
Date: August 1, 2002
Creator: Bradley, Joe Anthony
System: The UNT Digital Library
Hydrogen Storage Properties of Lithium Aluminohydride Modified by Dopants and Mechanochemistry (open access)

Hydrogen Storage Properties of Lithium Aluminohydride Modified by Dopants and Mechanochemistry

Alkali metal aluminohydrides have high potential as solid hydrogen storage materials. They have been known for their irreversible dehydrogenation process below 100 atm until Bogdanovic et al [1, 2] succeeded in the re-hydrogenation of NaAlH{sub 4} below 70 atm. They achieved 4 wt.% H{sub 2} reversible capacity by doping NaAlH{sub 4} with Ti and/or Fe organo-metalic compounds as catalysts. This suggests that other alkali and, possibly alkaline earth metal aluminohydrides can be used for reversible hydrogen storage when modified by proper dopants. In this research, Zr{sub 27}Ti{sub 9}Ni{sub 38}V{sub 5}Mn{sub 16}Cr{sub 5}, LaNi{sub 4.85}Sn{sub 0.15}, Al{sub 3}Ti, and PdCl{sub 2} were combined , LaNi4.85Sn0.15, Al3Ti, and PdCl2 were combined with LiAlH{sub 4} by ball-milling to study whether or not LiAlH{sub 4} is capable to both absorb and desorb hydrogen near ambient conditions. X-ray powder diffraction, differential thermal analysis, and scanning electron microscopy were employed for sample characterizations. All four compounds worked as catalysts in the dehydrogenation reactions of both LiAlH{sub 4} and Li{sub 3}AlH{sub 6} by inducing the decomposition at lower temperature. However, none of them was applicable as catalyst in the reverse hydrogenation reaction at low to moderate hydrogen pressure.
Date: August 1, 2002
Creator: Hosokawa, Keita
System: The UNT Digital Library
Magnetic, Caloric and Crystallographic Properties of Dy5(SixGe1-x)4 Alloys (open access)

Magnetic, Caloric and Crystallographic Properties of Dy5(SixGe1-x)4 Alloys

None
Date: August 1, 2002
Creator: Ivchenko, Vitaliy Vladislavovich
System: The UNT Digital Library
Length Scale Correlations of Cellular Microstructures in Directionally Solidified Binary System (open access)

Length Scale Correlations of Cellular Microstructures in Directionally Solidified Binary System

In a cellular array, a range of primary spacing is found to be stable under given growth conditions. Since a strong coupling of solute field exists between the neighboring cells, primary spacing variation should also influence other microstructure features such as cell shape and cell length. The existence of multiple solutions is examined in this study both theoretically as well as experimentally. A theoretical model is developed that identifies and relates four important microstructural lengths, which are found to be primary spacing, tip radius, cell width and cell length. This general microstructural relationship is shown to be valid for different cells in an array as well as for other cellular patterns obtained under different growth conditions. The unique feature of the model is that the microstructure correlation does not depend on composition or growth conditions since these variables scale microstructural lengths to satisfy the relationship obtained in this study. Detailed directional solidification experimental studies have been carried out in the succinonitrile-salol system to characterize and measure these four length scales. Besides the validation of the model, experimental results showed additional scaling laws to be present. In the regime where only a cellular structure is formed, the shape of the cell, …
Date: August 1, 2002
Creator: Shen, Yunxue
System: The UNT Digital Library