UMTRA Project Water Sampling and Analysis Plan, Riverton, Wyoming (open access)

UMTRA Project Water Sampling and Analysis Plan, Riverton, Wyoming

Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.
Date: March 1994
Creator: unknown
System: The UNT Digital Library
Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Processing Site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology Report, Final (open access)

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Processing Site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology Report, Final

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.
Date: March 1994
Creator: unknown
System: The UNT Digital Library
Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary Final (open access)

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary Final

This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.
Date: March 1994
Creator: unknown
System: The UNT Digital Library
UMTRA Project Water Sampling and Analysis Plan, Spook, Wyoming (open access)

UMTRA Project Water Sampling and Analysis Plan, Spook, Wyoming

Surface remedial action is complete at the Spook Uranium Mill Tailings Remedial Action Project site in Wyoming. Based on an evaluation of site characterization data, the US Nuclear Regulatory Commission, US Department of Energy, and state of Wyoming have concurred in the determination that a program to monitor ground water is not required because ground water in the uppermost aquifer is Class 3 (limited use) (40 CFR 192.21(g)(1993)).
Date: March 1994
Creator: unknown
System: The UNT Digital Library
Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado. Attachment 3, Ground Water Hydrology Report: Preliminary Final (open access)

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado. Attachment 3, Ground Water Hydrology Report: Preliminary Final

The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent ground water contamination resulting from processing activities at inactive uranium milling sites (52 FR 36000 (1987)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, 42 USC {section}7901 et seq., the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site. The water resources protection strategy that describes how the proposed action will comply with the EPA ground water protection standards is presented in Attachment 4. The following site characterization activities are discussed in this attachment: Characterization of the hydrogeologic environment, including hydrostratigraphy, ground water occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing ground water quality by comparison with background water quality and the maximum concentration limits (MCL) of the proposed EPA ground water protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of …
Date: March 4, 1994
Creator: unknown
System: The UNT Digital Library
Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Processing Site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater Hydrology Report, Attachment 4: Water Resources Protection Strategy, Final (open access)

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Processing Site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater Hydrology Report, Attachment 4: Water Resources Protection Strategy, Final

Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.
Date: March 1994
Creator: unknown
System: The UNT Digital Library
UMTRA Project Water Sampling and Analysis Plan: Canonsburg and Burrell, Pennsylvania (open access)

UMTRA Project Water Sampling and Analysis Plan: Canonsburg and Burrell, Pennsylvania

Surface remedial action was completed at the Canonsburg and Burrell UMTRA Project sites in southwestern Pennsylvania in 1985 and 1987, respectively. Results of 1993 water sampling indicate ground water flow conditions and ground water quality at both sites have remained relatively consistent with time. Uranium concentrations in ground water continue to exceed the maximum concentration limit (MCL) at the Canonsburg site; no MCLs are exceeded in ground water at the Burrell site. Surface water quality shows no evidence of impact from the sites.
Date: March 1994
Creator: unknown
System: The UNT Digital Library
Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Processing Site at Naturita, Colorado. Appendix a of Attachment 3: Calculations, Final (open access)

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Processing Site at Naturita, Colorado. Appendix a of Attachment 3: Calculations, Final

This report contains calculations for: hydraulic gradients for Alluvial Aquifer and Salt Wash Aquifer; slug test analysis to determine hydraulic conductivity for Alluvial Aquifer and Salt Wash Aquifer; average linear groundwater velocity for Alluvial Aquifer and Salt Wash Aquifer; statistical analysis of the extent of existing groundwater contamination; hydraulic gradients for Dakota/Burro Canyon Formation and Salt Wash Aquifer; slug test analysis to determine hydraulic conductivity for Dakota/Burro Canyon Formation and Perched Salt Wash Aquifer; determination of hydraulic conductivity of the Dakota/Burro Canyon Formation from Packer Tests; average linear groundwater velocity for Dakota/Burro Canyon and Salt Wash Aquifer; chemical and mineralogical characterization of core samples from the Dry Flats Disposal Site; and demonstration of low groundwater yield from Uppermost Aquifer.
Date: March 1994
Creator: unknown
System: The UNT Digital Library
Gunnison, Colorado, Subpile Study Report (open access)

Gunnison, Colorado, Subpile Study Report

To protect human health and the environment, the UMTRA project will remediate the uranium mill tailings site at Gunnison, Colorado. There are explicit requirements (i.e., 40 Part CFR Part 192) for the surface remediation of radiologically contaminated soils on UMTRA sites. The removal of subpile sediment to the depth required by 40 CFR Part 192 will leave in place deeper foundation sediment that is contaminated with hazardous constituents other than radium-226 and thorium-230. The Department of Energy and the Colorado Department of Health have questioned whether this contaminated soil could potentially act as a continuing source of ground water contamination even after surface remediation based on 40 CFR Part 192 is complete. To evaluate the subpile sediments as a potential source of ground water contamination, the Gunnison subpile study was initiated. This report summarizes the results and findings of this study.
Date: March 1, 1994
Creator: unknown
System: The UNT Digital Library
Long-Term Surveillance Plan for the Bodo Canyon Disposal Site, Durango, Colorado (open access)

Long-Term Surveillance Plan for the Bodo Canyon Disposal Site, Durango, Colorado

This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).
Date: March 1, 1994
Creator: unknown
System: The UNT Digital Library
Surfactant studies for bench-scale operation. Final technical progress report, July 1, 1992--March 31, 1994 (open access)

Surfactant studies for bench-scale operation. Final technical progress report, July 1, 1992--March 31, 1994

The present work effort relates to an investigation of surfactant-assisted coal liquefaction with the objective of quantifying the enhancement in overall coal conversions and the product quality. Based on the results of a Phase 1 preliminary study on the effect of several surfactants on coal liquefaction, sodium lignosulfonate was chosen as the surfactant for a detailed parametric study to be conducted at JPL using a batch autoclave reactor. These tests primarily related to thermal liquefaction of coal. The results of JPL autoclave test runs showed an increase in overall conversions from 5 to 15% due to surfactant addition over the base case of coal alone. A continuous-flow bench scale coal liquefaction process run was conducted over a 5-day period at Hydrocarbon Research Incorporated (HRI). This test showed that the surfactant is suitable for an industrial continuous recycle process, and does not interfere with the supported catalyst. After the bench scale test, a series of autoclave runs were conducted with coprocessing the surfactant and the Ni-Mo catalyst. These experiments showed that high conversions and product quality can be maintained at milder processing conditions. Based on results of the autoclave test runs, the overall product values were obtained for two stage reactors …
Date: March 31, 1994
Creator: Hickey, G. S. & Sharma, P. K.
System: The UNT Digital Library
Final report for the geothermal well site restoration and plug and abandonment of wells: DOE Pleasant Bayou test site, Brazoria County, Texas (open access)

Final report for the geothermal well site restoration and plug and abandonment of wells: DOE Pleasant Bayou test site, Brazoria County, Texas

For a variety of reasons, thousands of oil and gas wells have been abandoned in the Gulf Coast Region of the United States. Many of these wells penetrated geopressured zones whose resource potential for power generation was undervalued or ignored. The U.S. Department of Energy (DOE) Geopressured-Geothermal Research Program was chartered to improve geothermal technology to the point where electricity could be commercially produced from a substantial number of geopressured resource sites. This research program focused on relatively narrow technical issues that are unique to geopressured resources such as the ability to predict reservoir production capacity based on preliminary flow tests. Three well sites were selected for the research program. These are the Willis Hulin and Gladys McCall sites in Louisiana, and the Pleasant Bayou site in Texas. The final phase of this research project consists of plug and abandonment (P&A) of the wells and site restoration.
Date: March 13, 1994
Creator: Rinehart, Ben N. & Seigel, Ben H.
System: The UNT Digital Library