172 Matching Results

Results open in a new window/tab.

Air Corridors: Concept, Design, Simulation, and Rules of Engagement (open access)

Air Corridors: Concept, Design, Simulation, and Rules of Engagement

Air corridors are an integral part of the advanced air mobility infrastructure. They are the virtual highways in the sky for transportation of people and cargo in the controlled airspace at an altitude of around 1000 ft. to 2000 ft. above the ground level. This paper presents fundamental insights into the design of air corridors with high operational efficiency as well as zero collisions. It begins with the definitions of air cube, skylane or track, intersection, vertiport, gate, and air corridor. Then, a multi-layered air corridor model is proposed. Traffic at intersections is analyzed in detail with examples of vehicles turning in different directions. The concept of capacity of an air corridor is introduced along with the nature of distribution of locations of vehicles in the air corridor and collision probability inside the corridor are discussed. Finally, the results of simulations of traffic flows are presented.
Date: December 2021
Creator: Muna, Sabrina Islam
System: The UNT Digital Library
A Convergence Analysis of LDPC Decoding Based on Eigenvalues (open access)

A Convergence Analysis of LDPC Decoding Based on Eigenvalues

Low-density parity check (LDPC) codes are very popular among error correction codes because of their high-performance capacity. Numerous investigations have been carried out to analyze the performance and simplify the implementation of LDPC codes. Relatively slow convergence of iterative decoding algorithm affects the performance of LDPC codes. Faster convergence can be achieved by reducing the number of iterations during the decoding process. In this thesis, a new approach for faster convergence is suggested by choosing a systematic parity check matrix that yields lowest Second Smallest Eigenvalue Modulus (SSEM) of its corresponding Laplacian matrix. MATLAB simulations are used to study the impact of eigenvalues on the number of iterations of the LDPC decoder. It is found that for a given (n, k) LDPC code, a parity check matrix with lowest SSEM converges quickly as compared to the parity check matrix with high SSEM. In other words, a densely connected graph that represents the parity check matrix takes more iterations to converge than a sparsely connected graph.
Date: August 2017
Creator: Kharate, Neha Ashok
System: The UNT Digital Library
Formation Control of Multi-Agent Systems (open access)

Formation Control of Multi-Agent Systems

Formation control is a classical problem and has been a prime topic of interest among the scientific community in the past few years. Although a vast amount of literature exists in this field, there are still many open questions that require an in-depth understanding and a new perspective. This thesis contributes towards exploring the wide dimensions of formation control and implementing a formation control scheme for a group of multi-agent systems. These systems are autonomous in nature and are represented by double integrated dynamics. It is assumed that the agents are connected in an undirected graph and use a leader-follower architecture to reach formation when the leading agent is given a velocity that is piecewise constant. A MATLAB code is written for the implementation of formation and the consensus-based control laws are verified. Understanding the effects on formation due to a fixed formation geometry is also observed and reported. Also, a link that describes the functional similarity between desired formation geometry and the Laplacian matrix has been observed. The use of Laplacian matrix in stability analysis of the formation is of special interest.
Date: August 2017
Creator: Mukherjee, Srijita
System: The UNT Digital Library
Design fully-integrated dual-band two-stage class-E CMOS PA (open access)

Design fully-integrated dual-band two-stage class-E CMOS PA

In retrospect we can see that from the last century, wireless electronic technology has been in a rapid state of development. With the popularity of wireless communication, the power amplifier demand is rising. In general, magnitude, maximum noise figure, minimum noise figure, efficiency, and output power are important indicators of the amplifier. The IC industry is exploring how to reduce the additional cost and improve the high-frequency performance. Therefore, designing a strong adaptability and high cost performance of the PA has become a priority. As these technologies advance, the power amplifiers need to have better integration, lower cost, and lower power dissipation. Also, some special requirements are being asked in some areas, such as multi-mode and multi-band. In general, people have to use several power amplifiers parallel to frame a multifunction chip. Each of them working at different frequencies of interest has to have separate matching network, design, and area; also, the diversity amplifier prices will increase with the number of amplifiers, and its cost is also changed. In this thesis, because Class E power amplifier has lower power dissipation, 100% ideal efficiency, simple circuit structure, and strong applicability, the Class E is used as power amplifier in main stage. …
Date: August 2015
Creator: Zhao, Chao (Electrical engineering researcher)
System: The UNT Digital Library