A Hierarchical Control Architecture for a PEBB-Based ILC Marx Modulator (open access)

A Hierarchical Control Architecture for a PEBB-Based ILC Marx Modulator

The idea of building power conversion systems around Power Electronic Building Blocks (PEBBs) was initiated by the U.S. Office of Naval Research in the mid 1990s. A PEBB-based design approach is advantageous in terms of power density, modularity, reliability, and serviceability. It is obvious that this approach has much appeal for pulsed power conversion including the International Linear Collider (ILC) klystron modulator application. A hierarchical control architecture has the inherent capability to support the integration of PEBBs. This has already been successfully demonstrated in a number of industrial applications in the recent past. This paper outlines the underlying concepts of a hierarchical control architecture for a PEBB-based Marx-topology ILC klystron modulator. The control in PEBB-based power conversion systems can be functionally partitioned into (three) hierarchical layers; system layer, application layer, and PEBB layer. This has been adopted here. Based on such a hierarchical partition, the interfaces are clearly identified and defined and, consequently, are easily characterised. A conceptual design of the hardware manager, executing low-level hardware oriented tasks, is detailed. In addition, the idea of prognostics is briefly discussed.
Date: December 15, 2011
Creator: Macken, K.; Burkhart, C.; Larsen, R.; Nguyen, M. N. & Olsen, J.
Object Type: Article
System: The UNT Digital Library
Evaluation of Glass Density to Support the Estimation of Fissile Mass Loadings from Iron Concentrations in SB6 Glasses (open access)

Evaluation of Glass Density to Support the Estimation of Fissile Mass Loadings from Iron Concentrations in SB6 Glasses

The Department of Energy - Savannah River (DOE-SR) previously provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of the guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft{reg_sign} Excel{reg_sign} spreadsheet for the evaluation of fissile loading in Sludge Batch 5 glass based on the Fe concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that SRNL provide the necessary information to allow SRR to update the Excel spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 6 (SB6). One of the primary inputs into the fissile loading spreadsheet includes a bounding density for SB6-based glasses. Based on the measured density data of select SB6 variability study glasses, SRNL recommends that SRR utilize the 99/99 Upper Tolerance Limit (UTL) density value at 38% WL (2.823 g/cm{sup 3}) as a bounding density for SB6 glasses to assess the fissile concentration in this glass system. That is, the 2.823 g/cm{sup 3} is recommended as a key (and fixed) input into the …
Date: December 15, 2010
Creator: Edwards, T. & Peeler, D.
Object Type: Report
System: The UNT Digital Library
Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations (open access)

Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations

The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases into the atmosphere. However, costs of capture and compression of CO{sub 2} from industrial waste streams containing small quantities of sulfur and nitrogen compounds such as SO{sub 2}, H{sub 2}S and N{sub 2} are very expensive. Therefore, studies on the co-injection of CO{sub 2} containing other acid gases from industrial emissions are very important. In this paper, numerical simulations were performed to study the co-injection of H{sub 2}S with CO{sub 2} in sandstone and carbonate formations. Results indicate that the preferential dissolution of H{sub 2}S gas (compared with CO{sub 2} gas) into formation water results in the delayed breakthrough of H{sub 2}S gas. Co-injection of H{sub 2}S results in the precipitation of pyrite through interactions between the dissolved H{sub 2}S and Fe{sup 2+} from the dissolution of Fe-bearing minerals. Additional injection of H{sub 2}S reduces the capabilities for solubility and mineral trappings of CO{sub 2} compared to the CO{sub 2} only case. In comparison to the sandstone (siliciclastic) formation, the carbonate formation is less favorable to the mineral sequestration of CO{sub 2}. Different from CO{sub 2} …
Date: December 15, 2010
Creator: Zhang, W.; Xu, T. & Li, Y.
Object Type: Article
System: The UNT Digital Library
Reducing the losses of optical metamaterials (open access)

Reducing the losses of optical metamaterials

The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, {var_epsilon}. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. …
Date: December 15, 2010
Creator: Fang, Anan
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Developing new optical imaging techniques for single particle and molecule tracking in live cells (open access)

Developing new optical imaging techniques for single particle and molecule tracking in live cells

Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different …
Date: December 15, 2010
Creator: Sun, Wei
Object Type: Thesis or Dissertation
System: The UNT Digital Library
2009 Pantex Plant Annual Illness and Injury Surveillance (open access)

2009 Pantex Plant Annual Illness and Injury Surveillance

The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
Date: December 15, 2010
Creator: United States. Department of Energy. Office of Illness and Injury Prevention Programs.
Object Type: Report
System: The UNT Digital Library
Raman Investigation of The Uranium Compounds U3O8, UF4, UH3 and UO3 under Pressure at Room Temperature (open access)

Raman Investigation of The Uranium Compounds U3O8, UF4, UH3 and UO3 under Pressure at Room Temperature

Our current state-of-the-art X-ray diffraction experiments are primarily sensitive to the position of the uranium atom. While the uranium - low-Z element bond (such as U-H or U-F) changes under pressure and temperature the X-ray diffraction investigations do not reveal information about the bonding or the stoichiometry. Questions that can be answered by Raman spectroscopy are (i) whether the bonding strength changes under pressure, as observed by either blue- or red-shifted peaks of the Raman active bands in the spectrum and (ii) whether the low-Z element will eventually be liberated and leave the host lattice, i.e. do the fluorine, oxygen, or hydrogen atoms form dimers after breaking the bond to the uranium atom. Therefore Raman spectra were also collected in the range where those decomposition products would appear. Raman is particularly well suited to these types of investigations due to its sensitivity to trace amounts of materials. One challenge for Raman investigations of the uranium compounds is that they are opaque to visible light. They absorb the incoming radiation and quickly heat up to the point of decomposition. This has been dealt with in the past by keeping the incoming laser power to very low levels on the tens of …
Date: December 15, 2011
Creator: Lipp, M. J.; Jenei, Z.; Park-Klepeis, J. & Evans, W. J.
Object Type: Report
System: The UNT Digital Library
Checklist for Transition to New Highway Fuel(s). (open access)

Checklist for Transition to New Highway Fuel(s).

Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of …
Date: December 15, 2011
Creator: Risch, C. & Santini, D.J. (Energy Systems)
Object Type: Report
System: The UNT Digital Library
Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept (open access)

Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept

Urbanization is reshaping China's economy, society, and energy system. Between 1990 and 2008 China added more than 300 million new urban residents, bringing the total urbanization rate to 46%. The ongoing population shift is spurring energy demand for new construction, as well as additional residential use with the replacement of rural biomass by urban commercial energy services. This project developed a modeling tool to quantify the full energy consequences of a particular form of urban residential development in order to identify energy- and carbon-efficient modes of neighborhood-level development and help mitigate resource and environmental implications of swelling cities. LBNL developed an integrated modeling tool that combines process-based lifecycle assessment with agent-based building operational energy use, personal transport, and consumption modeling. The lifecycle assessment approach was used to quantify energy and carbon emissions embodied in building materials production, construction, maintenance, and demolition. To provide more comprehensive analysis, LBNL developed an agent-based model as described below. The model was applied to LuJing, a residential development in Jinan, Shandong Province, to provide a case study and model proof of concept. This study produced results data that are unique by virtue of their scale, scope and type. Whereas most existing literature focuses on building-, …
Date: December 15, 2010
Creator: Aden, Nathaniel; Qin, Yining & Fridley, David
Object Type: Report
System: The UNT Digital Library
Improving the Material Response for Slow Heat of Energetic Materials (U) (open access)

Improving the Material Response for Slow Heat of Energetic Materials (U)

The goal of modern high explosive slow heat cookoff modeling is to understand the level of mechanical violence. This requires understanding the coupled thermal-mechanical-chemical system that such an environment creates. Recent advances have improved our ability to predict the time to event, and we have been making progress on predicting the mechanical response. By adding surface tension to the product gas pores in the high explosive, we have been able to reduce the current model's tendency to over-pressurize confinement vessels. We describe the model and demonstrate how it affects a LX-10 STEX experiment. Issues associated with current product gas equations of state are described and examined.
Date: December 15, 2010
Creator: Nichols, A. L.
Object Type: Article
System: The UNT Digital Library
Magnetic nanoparticles for applications in oscillating magnetic field (open access)

Magnetic nanoparticles for applications in oscillating magnetic field

Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series …
Date: December 15, 2010
Creator: Peeraphatdit, Chorthip
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Dislocation dynamics simulations of plasticity at small scales (open access)

Dislocation dynamics simulations of plasticity at small scales

As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results …
Date: December 15, 2010
Creator: Zhou, Caizhi
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate (open access)

Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate

This work aims to characterize microbial tolerance to 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), ionic liquid that has emerged as a novel biomass pretreatment for lignocellulosic biomass. Enrichment experiments performed using inocula treated with [C2mim][OAc] under solid and liquid cultivation yielded fungal populationsdominated by Aspergilli. Ionic liquid-tolerant Aspergillus isolates from these enrichments were capable of growing in a radial plate growth assay in the presence of 10% [C2mim][OAc]. When a [C2mim][OAc]-tolerant Aspergillus fumigatus strain was grown in the presence of switchgrass, endoglucanases and xylanases were secreted that retained residual enzymatic activity in the presence of 20% [C2mim][OAc]. The results of the study suggest tolerance to ionic liquids is a general property of Aspergilli. Tolerance to an industrially important ionic liquid was discovered in a fungal genera that is widely used in biotechnology, including biomass deconstruction.
Date: December 15, 2010
Creator: Singer, S.W.; Reddy, A. P.; Gladden, J. M.; Guo, H.; Hazen, T.C.; Simmons, B. A. et al.
Object Type: Article
System: The UNT Digital Library
Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors (open access)

Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} (Tl2201) T{sub c,max} {approx} 95 K and (Bi{sub 1.35}Pb{sub 0.85})(Sr{sub 1.47}La{sub 0.38})CuO{sub 6+{delta}} (Bi2201) T{sub c,max} {approx} 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to ({pi},0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher T{sub c} Tl2201. The second study looks at the different ways of doping Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the …
Date: December 15, 2010
Creator: Palczewski, Ari Deibert
Object Type: Thesis or Dissertation
System: The UNT Digital Library
DEVELOPMENT OF SOLID COLLECTION DIAGNOSTICS ON NIF THROUGH BLAST SHIELD ANALYSIS (open access)

DEVELOPMENT OF SOLID COLLECTION DIAGNOSTICS ON NIF THROUGH BLAST SHIELD ANALYSIS

Radiochemical analysis of post-shot debris inside the National Ignition Facility (NIF) target chamber can help determine various diagnostic parameters associated with the implosion efficiency of the fusion capsule. This capability is limited by the amount of target isotope that can be loaded inside the capsule ablator without affecting performance and the collection efficiency of the capsule debris after implosion. Prior to designing a collection system, the chemical nature and distribution of the debris inside the chamber must be determined and analysis methods developed. The focus of our current work has been on determining the elemental composition and distribution of debris on various blast shields and witness plates that were exposed to the chamber during ignition shots that occurred in 2009. These passive collection plates were used to develop both non-destructive and chemical analysis techniques to determine debris composition and melt depth at various shot energy profiles. A summary of these data will be presented along with our current strategy for the 2011 campaign.
Date: December 15, 2011
Creator: Gostic, J M; Shaughnessy, D A; Grant, P M; Hutcheon, I D; Lewis, L A & Moody, K J
Object Type: Article
System: The UNT Digital Library
Derivation of Equivalent Continuous Dilution for Cyclic, Unsteady Driving Forces (open access)

Derivation of Equivalent Continuous Dilution for Cyclic, Unsteady Driving Forces

This article uses an analytical approach to determine the dilution of an unsteadily-generated solute in an unsteady solvent stream, under cyclic temporal boundary conditions. The goal is to find a simplified way of showing equivalence of such a process to a reference case where equivalent dilution is defined as a weighted average concentration. This derivation has direct applications to the ventilation of indoor spaces where indoor air quality and energy consumption cannot in general be simultaneously optimized. By solving the equation we can specify how much air we need to use in one ventilation pattern compared to another to obtain same indoor air quality. Because energy consumption is related to the amount of air exchanged by a ventilation system, the equation can be used as a first step to evaluate different ventilation patterns effect on the energy consumption. The use of the derived equation is demonstrated by representative cases of interest in both residential and non-residential buildings.
Date: December 15, 2010
Creator: Laboratory, Lawrence Berkeley National; Technical University of Denmark, Department of Civil Engineering; Mortensen, Dorthe K.; Walker, Iain S. & Sherman, Max H.
Object Type: Article
System: The UNT Digital Library
INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK (open access)

INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY
Date: December 15, 2010
Creator: Weaver, P. C.
Object Type: Report
System: The UNT Digital Library
Measurements of Exclusive B \to Xc l nubar Decays and |Vcb| at BaBar (open access)

Measurements of Exclusive B \to Xc l nubar Decays and |Vcb| at BaBar

None
Date: December 15, 2011
Creator: Pegna, David Lopes
Object Type: Article
System: The UNT Digital Library
Final Report of Project Nanometer Structures for Fuel Cells and Displays, etc. (open access)

Final Report of Project Nanometer Structures for Fuel Cells and Displays, etc.

Low-energy ion beam bombardment induced self-assembly has been used to form various periodic nano-size wave-ordered structures (WOS). Such WOS can be used as hard etching masks to produce nanowire arrays, trenches etc., on other materials by means of traditional etching or ion sputtering. These periodic nano-size structures have a wide range of applications, including flat panel displays, optical electronics, and clean energy technologies (solar and fuel cells, lithium batteries). In order to achieve high throughput of the above processes, a large area RF-driven multicusp nitrogen ion source has been developed for the application of nitrogen ion beam induced surface modification. An integrated ion beam system, which can house either a large area RF-driven multicusp ion source or a commercially available microwave ion source (Roth & Rau AG Tamiris 400-f) have been designed, manufactured, assembled, and tested.
Date: December 15, 2011
Creator: Ji, Qing
Object Type: Report
System: The UNT Digital Library
Final Review of Safety Assessment Issues at Savannah River Site, August 2011 (open access)

Final Review of Safety Assessment Issues at Savannah River Site, August 2011

At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Though the meeting was prompted initially by suspected issues related to the treatment of surface roughness inherent in the SRS meteorological dataset and its treatment in the MELCOR Accident Consequence Code System Version 2 (MACCS2), various topical areas were discussed that are relevant to performing safety assessments at SRS; this final report addresses these topical areas.
Date: December 15, 2011
Creator: Napier, Bruce A.; Rishel, Jeremy P. & Bixler, Nathan E.
Object Type: Report
System: The UNT Digital Library
CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES (open access)

CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic …
Date: December 15, 2010
Creator: Xu, T.; Slaa, J.W. & Sathaye, J.
Object Type: Report
System: The UNT Digital Library
CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries (open access)

CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries

Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System’s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have …
Date: December 15, 2012
Creator: Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.) et al.
Object Type: Report
System: The UNT Digital Library
Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California (open access)

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs …
Date: December 15, 2010
Creator: Xu, Tengfang; Slaa, Jan Willem & Sathaye, Jayant
Object Type: Report
System: The UNT Digital Library
Using the Schur Complement to Reduce Runtime in KULL's Magnetic Diffusion Package (open access)

Using the Schur Complement to Reduce Runtime in KULL's Magnetic Diffusion Package

Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many more unknowns per zone - approximately ten times more for a hexahedral mesh. We can eliminate some (or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly by using a Schur complement approach. This trades expensive global work for cache-friendly local work, while still allowing solution for the full system. Significant improvements in the solution time are observed for several test problems.
Date: December 15, 2010
Creator: Brunner, T A & Kolev, T V
Object Type: Article
System: The UNT Digital Library