Oxidation of alloys targeted for advanced steam turbines (open access)

Oxidation of alloys targeted for advanced steam turbines

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.
Date: March 12, 2006
Creator: Holcomb, G. R.; Covino, B. S., Jr.; Bullard, S. J.; Ziomek-Moroz, M. & Alman, D. E.
System: The UNT Digital Library
Benefits of IEEE-754 features in modern symmetric tridiagonaleigensolvers (open access)

Benefits of IEEE-754 features in modern symmetric tridiagonaleigensolvers

Bisection is one of the most common methods used to compute the eigenvalues of symmetric tridiagonal matrices. Bisection relies on the Sturm count: For a given shift a, the number of negative pivots in the factorization T - {sigma}I = LDL{sup T} equals the number of eigenvalues of T that are smaller than a. In IEEE-754 arithmetic, the value oo permits the computation to continue past a zero pivot, producing a correct Sturm count when T is unreduced. Demmel and Li showed that using oo rather than testing for zero pivots within the loop could significantly improve performance on certain architectures. When eigenvalues are to be computed to high relative accuracy, it is often preferable to work with LDL{sup T} factorizations instead of the original tridiagonal T. One important example is the MRRR algorithm. When bisection is applied to the factored matrix, the Sturm count is computed from LDL{sup T} which makes differential stationary and progressive qds algorithms the methods of choice. While it seems trivial to replace T by LDL{sup T}, in reality these algorithms are more complicated: In IEEE-754 arithmetic, a zero pivot produces an overflow followed by an invalid exception (NaN, or 'Not a Number') that renders …
Date: March 12, 2006
Creator: Marques, Osni; Riedy, Jason E. & Vomel, Christof
System: The UNT Digital Library
Stark tuning of donor electron spins in silicon (open access)

Stark tuning of donor electron spins in silicon

We report Stark shift measurements for 121Sb donor electronspins in silicon using pulsed electron spin resonance. Interdigitatedmetal gates on top of a Sb-implanted 28Si epi-layer are used to applyelectric fields. Two Stark effects are resolved: a decrease of thehyperfine coupling between electron and nuclear spins of the donor and adecrease in electron Zeeman g-factor. The hyperfine term prevails atX-band magnetic fields of 0.35T, while the g-factor term is expected todominate at higher magnetic fields. A significant linear Stark effect isalso resolved presumably arising from strain.
Date: March 12, 2006
Creator: Bradbury, Forrest R.; Tyryshkin, Alexei M.; Sabouret, Guillaume; Bokor, Jeff; Schenkel, Thomas & Lyon, Stephen A.
System: The UNT Digital Library