Resource Type

University/NETL Student Partnership Program (open access)

University/NETL Student Partnership Program

None
Date: December 31, 2003
Creator: Holder, Gerald D.
System: The UNT Digital Library
Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge (open access)

Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge

The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated …
Date: August 31, 2003
Creator: Malhotra, V. M. & Chugh, Y. P.
System: The UNT Digital Library
Proceedings of the USNRC/EPRI/ANL heated crevice seminar. (open access)

Proceedings of the USNRC/EPRI/ANL heated crevice seminar.

An international Heated Crevice Seminar, sponsored by the Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Argonne National Laboratory, and the Electric Power Research Institute, was held at Argonne National Laboratory on October 7-11, 2002. The objective of the seminar was to provide a working forum for the exchange of information by contributing experts on current issues related to corrosion in heated crevices, particularly as it relates to the integrity of PWR steam generator tubes. Forty-five persons from six countries attended the seminar, including representatives from government agencies, private industry and consultants, government research laboratories, nuclear vendors, and electrical utilities. The seminar opened with keynote talks on secondary-side crevice environments associated with IGA and IGSCC of mill-annealed Alloy 600 steam generator tubes and the submodes of corrosion in heat transfer crevices. This was followed by technical sessions on (1) Corrosion in Crevice Geometries, (2) Experimental Methods, (3) Results from Experimental Studies, and (4) Modeling. The seminar concluded with a panel discussion on the present understanding of corrosive processes in heated crevices and future research needs.
Date: August 31, 2003
Creator: Park, J. Y.; Fruzzetti, K.; Muscara, J.; Diercks, D. R.; Technology, Energy; EPRI et al.
System: The UNT Digital Library
Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants (open access)

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. …
Date: December 31, 2003
Creator: Maroto-Valer, M. Mercedes; Andresen, John M.; Zhang, Yinzhi & Lu, Zhe
System: The UNT Digital Library
University/NETL Student Partnership Program (open access)

University/NETL Student Partnership Program

None
Date: December 31, 2003
Creator: Holder, Gerald D.
System: The UNT Digital Library
Improving the Efficiency of Solid State Light Sources (open access)

Improving the Efficiency of Solid State Light Sources

This proposal addresses the national need to develop a high efficiency light source for general illumination applications. The goal is to perform research that would lead to the fabrication of a unique solid state, white-emitting light source. This source is based on an InGaN/GaN UV-emitting chip that activates a luminescent material (phosphor) to produce white light. White-light LEDs are commercially available which use UV from a GaN chip to excite a phosphor suspended in epoxy around the chip. Currently, these devices are relatively inefficient. This research will target one technical barrier that presently limits the efficiency of GaN based devices. Improvements in efficiencies will be achieved by improving the internal conversion efficiency of the LED die, by improving the coupling between the die and phosphor(s) to reduce losses at the surfaces, and by selecting phosphors to maximize the emissions from the LEDs in conversion to white light. The UCSD research team proposes for this project to develop new phosphors that have high quantum efficiencies that can be activated by the UV-blue (360-410 nm) light emitted by the GaN device. The main goal for the UCSD team was to develop new phosphor materials with a very specific property: phosphors that could …
Date: March 31, 2003
Creator: McKittrick, Joanna
System: The UNT Digital Library
Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain (open access)

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core …
Date: December 31, 2003
Creator: Mancini, Ernest A.
System: The UNT Digital Library
Assessment of CO2 Sequestration and ECBM Potential of U.S. Coalbeds (open access)

Assessment of CO2 Sequestration and ECBM Potential of U.S. Coalbeds

In October, 2000, the U.S. Department of Energy, through contractor Advanced Resources International, launched a multi-year government-industry R&D collaboration called the Coal-Seq project. The Coal-Seq project is investigating the feasibility of CO{sub 2} sequestration in deep, unmineable coalseams, by performing detailed reservoir studies of two enhanced coalbed methane recovery (ECBM) field projects in the San Juan basin. The two sites are the Allison Unit, operated by Burlington Resources, and into which CO{sub 2} is being injected, and the Tiffany Unit, operating by BP America, into which N{sub 2} is being injected (the interest in understanding the N{sub 2}-ECBM process has important implications for CO{sub 2} sequestration via flue-gas injection). The purposes of the field studies are to understand the reservoir mechanisms of CO{sub 2} and N{sub 2} injection into coalseams, demonstrate the practical effectiveness of the ECBM and sequestration processes, an engineering capability to simulate them, and to evaluate sequestration economics. In support of these efforts, laboratory and theoretical studies are also being performed to understand and model multi-component isotherm behavior, and coal permeability changes due to swelling with CO{sub 2} injection. This report describes the results of an important component of the overall project, applying the findings from the …
Date: March 31, 2003
Creator: Reeves, Scott R.
System: The UNT Digital Library
Future Directions for Thermal Distribution Standards (open access)

Future Directions for Thermal Distribution Standards

This report details development paths for advanced versions of ASHRAE Standard 152, Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Efficiency. During the course of conversations within the ASHRAE committee responsible for developing the standard (SPC152P), three areas of development for Standard 152 were proposed: (1) extend the scope of the standard to include thermal comfort variables; (2) extend the scope of the standard to include small commercial buildings; and (3) improve the existing standard with respect to accuracy and economy of effort. Research needs associated with each of the three options are identified.
Date: October 31, 2003
Creator: Andrews, John W.
System: The UNT Digital Library
Laboratory Directed Research and Development Annual Report to the Department of Energy - December 2003 (open access)

Laboratory Directed Research and Development Annual Report to the Department of Energy - December 2003

Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is …
Date: December 31, 2003
Creator: Fox, K. J.
System: The UNT Digital Library
Innovative Approach to Establish Root Causes for Cracking in Aggressive Reactor Environments (open access)

Innovative Approach to Establish Root Causes for Cracking in Aggressive Reactor Environments

The research focuses on the high-resolution characterization of degradation microstructures and microchemistries in specimens tested under controlled conditions for the environment and for the material where in-service complexities can be minimized. Thermodynamic and kinetic modeling of crack-tip processes is employed to analyze corrosion-induced structures and gain insights into degradation mechanisms. Novel mechanistic ''fingerprinting'' of crack-tip structures is used to isolate causes of environmental cracking in tandem with quantitative measurements of crack growth. Sample preparation methods and advanced analytical techniques are used to characterize corrosion/oxidation reactions and crack-tip structures at near atomic dimensions in order to gain insight into fundamental environmental cracking mechanisms. Reactions at buried interfaces, not accessible by conventional approaches, are being systematically interrogated. Crack-growth experiments in high-temperature water environments are evaluating and isolating the effects of material condition (matrix strength, grain boundary composition and precipitation) on stress corrosion cracking (SCC). The fundamental understanding of crack advance mechanisms will establish the basis to design new corrosion-resistant alloys for current light-water reactors and advanced reactor systems.
Date: October 31, 2003
Creator: Bruemmer, Stephen M.; Thomas, Larry E.; Vetrano, John S. & Simonen, Edward P.
System: The UNT Digital Library
Fish Passage Through a Simulated Horizontal Bulb Turbine Pressure Regime: A Supplement to"Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish" (open access)

Fish Passage Through a Simulated Horizontal Bulb Turbine Pressure Regime: A Supplement to"Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"

Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were compared to results from previous test series. Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low …
Date: July 31, 2003
Creator: Abernethy, Cary S.; Amidan, Brett G. & Cada, G. F.
System: The UNT Digital Library
LEACHING OF SLAG FROM STEEL RECYCLING: RADIONUCLIDES AND STABLE ELEMENTS. DATA REPORT, JAN.15, 1997, REVISED SEPT.9, 1997 (open access)

LEACHING OF SLAG FROM STEEL RECYCLING: RADIONUCLIDES AND STABLE ELEMENTS. DATA REPORT, JAN.15, 1997, REVISED SEPT.9, 1997

Of primary importance to this study are releases of radionuclides from slags. However, releases of other constituents also provide valuable information on releases of elements that may be toxic (e.g. Cr) or that may be used as analogs for radionuclides (e.g. K for Cs). In addition, leaching of bulk constituents from the slag gives information on weathering rates of the bulk material that can be used to estimate releases of non-leachable elements. Consequently, we have examined leaching of: radionuclides from those sloags that contain them; bulk elemental constituents of the slags; anionic constituents; trace elements, through spot checks of concentrations in leachates. Analysis by ICP of elemental constituents in leachates from radioactive samples was limited to those leachate samples that contained no detectable radionuclides, to avoid contamination of the ICP. In this data report we present leaching results for five slags that were produced by recycling steel. Two of the slags were generated at facilities that treat radioactively contaminated scrap, consequently the slag contains radionuclides. The slag from the other three was not contaminated. Because of this, we were able to examine the chemical composition of the slag and of the leachate generated during tests of these slags. For these …
Date: July 31, 2003
Creator: FUHRMANN,M. SCHOONEN,M.
System: The UNT Digital Library
The Abstract Machine Model for Transaction-based System Control (open access)

The Abstract Machine Model for Transaction-based System Control

Recent work applying statistical mechanics to economic modeling has demonstrated the effectiveness of using thermodynamic theory to address the complexities of large scale economic systems. Transaction-based control systems depend on the conjecture that when control of thermodynamic systems is based on price-mediated strategies (e.g., auctions, markets), the optimal allocation of resources in a market-based control system results in an emergent optimal control of the thermodynamic system. This paper proposes an abstract machine model as the necessary precursor for demonstrating this conjecture and establishes the dynamic laws as the basis for a special theory of emergence applied to the global behavior and control of complex adaptive systems. The abstract machine in a large system amounts to the analog of a particle in thermodynamic theory. The permit the establishment of a theory dynamic control of complex system behavior based on statistical mechanics. Thus we may be better able to engineer a few simple control laws for a very small number of devices types, which when deployed in very large numbers and operated as a system of many interacting markets yields the stable and optimal control of the thermodynamic system.
Date: January 31, 2003
Creator: Chassin, David P.
System: The UNT Digital Library
Mercuty Control With The Advanced Hybrid Particulate Collector (open access)

Mercuty Control With The Advanced Hybrid Particulate Collector

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC …
Date: March 31, 2003
Creator: Zhuang, Ye; Miller, Stanley J. & Olderbak, Michelle R.
System: The UNT Digital Library
C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen (open access)

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.
Date: March 31, 2003
Creator: Huffman, Gerald P.
System: The UNT Digital Library
NOx Control for Utility Boiler OTR Compliance (open access)

NOx Control for Utility Boiler OTR Compliance

Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale …
Date: December 31, 2003
Creator: Farzan, Hamid
System: The UNT Digital Library
Ceramic Membrane Enabling Technology for Improved IGCC Efficiency, Quarterly Technical Progress Report: October 1 - December 31, 2003 (open access)

Ceramic Membrane Enabling Technology for Improved IGCC Efficiency, Quarterly Technical Progress Report: October 1 - December 31, 2003

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter October to December 2003. In task ! OTM development has led to improved strength and composite design for lower temperatures. In task 2, the yield of a large batch of OTM elements improved. In task 3, operational improvements in the lab- scale pilot reactor have reduced turn- around time and increased product purity. In task 7. IGCC economics were updated to reflect state of the art OTM and cryogenic air separation processes.
Date: December 31, 2003
Creator: Prasad, Ravi
System: The UNT Digital Library
Major Oil Plays in Utah and Vicinity (open access)

Major Oil Plays in Utah and Vicinity

Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing …
Date: December 31, 2003
Creator: Chidsey, Thomas C.; Morgan, Craig D.; McClure, Kevin; Sprinkel, Douglas A.; Bon, Roger L. & Doelling, Hellmut H.
System: The UNT Digital Library
Tampa Electric Neural Network Sootblowing (open access)

Tampa Electric Neural Network Sootblowing

Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could …
Date: December 31, 2003
Creator: Rhode, Mark A.
System: The UNT Digital Library
Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures (open access)

Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2002 to April 01, 2003 which covers the first six months of the project. Presently work is in progress to characterize phase and emulsion behavior for condensate/water/ethanol system. Temperature and salinity scans are planned to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexist for this system. Test matrix to perform salinity and temperature scans has been established. Supply requests to obtain hydrocarbons, surfactant, etc., were processed and supplies obtained. Current literature in the subject area, and modeling efforts that were established in our previous studies to predict electrical conductivities and inversion phenomena were reviewed. Based on the review a computer model to predict electrical conductivities of the ethylbenzene (that has the equivalent carbon number of the condensate)/water/ethanol system is being developed. These activities resulted in one published conference abstract during this reporting period.
Date: March 31, 2003
Creator: Sampath, Ramanathan
System: The UNT Digital Library
NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: October-December 2003 (open access)

NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: October-December 2003

This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report …
Date: December 31, 2003
Creator: Bockelie, Mike; Davis, Kevin; Linjewile, Temi; Senior, Connie; Eddings, Eric; Whitty, Kevin et al.
System: The UNT Digital Library
Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas (open access)

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR …
Date: December 31, 2003
Creator: Lokhandwala, Kaaeid
System: The UNT Digital Library
In-Situ Sampling and Characterization of Naturally Occuring Marine Methane Hydrate Using the D/V JOIDES Resolution (open access)

In-Situ Sampling and Characterization of Naturally Occuring Marine Methane Hydrate Using the D/V JOIDES Resolution

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) Leg 204 scientific party members presented preliminary results and operational outcomes of ODP Leg 204 at the American Geophysical Union Fall meeting, which was held in San Francisco, CA; and, (2) a report was prepared by Dr. Gilles Guerin and David Goldberg from Lamont-Doherty Earth Observatory of Columbia University on their postcruise evaluation of the data, tools and measurement systems that were used for vertical seismic profiling (VSP) experiments during ODP Leg 204. The VSP report is provided herein. Intermediate in scale and resolution between the borehole data and the 3-D seismic surveys, the Vertical Seismic Profiles (VSP) carried during Leg 204 were aimed at defining the gas hydrate distribution on hydrate ridge, and refining the signature of gas hydrate in the seismic data. VSP surveys were attempted at five sites, following completion of the conventional logging operations. Bad hole conditions and operational difficulties did not allow to record any data in hole 1245E, but vertical and constant offset VSP were successful in holes 1244E, 1247B and 1250F, and walk-away VSP were successfully completed in holes 1244E, 1250F and 1251H. Three different tools were …
Date: December 31, 2003
Creator: Rack, Frank; Guerin, Gilles; Goldberg, David & Party, ODP Leg 204 Shipboard Scientific
System: The UNT Digital Library