Resource Type

875 Matching Results

Results open in a new window/tab.

Quantitative models of subduction zone fluids: How hydrous phases in the slab determine the composition of subduction zone lavas (open access)

Quantitative models of subduction zone fluids: How hydrous phases in the slab determine the composition of subduction zone lavas

None
Date: May 27, 2004
Creator: Feineman, M; Ryerson, F J & DePaolo, D
System: The UNT Digital Library
HYDROGEN EFFECTS ON THE BURST PROPERTIES OF TYPE 304L STAINLESS STEEL FLAWED VESSELS (open access)

HYDROGEN EFFECTS ON THE BURST PROPERTIES OF TYPE 304L STAINLESS STEEL FLAWED VESSELS

The effect of hydrogen on the burst properties Type 304L stainless steel vessels was investigated. The purpose of the study was to compare the burst properties of hydrogen-exposed stainless steel vessels burst with different media: water, helium gas, or deuterium gas. A second purpose of the tests was to provide data for the development of a predictive finite-element model. The burst tests were conducted on hydrogen-exposed and unexposed axially-flawed cylindrical vessels. The results indicate that samples burst pneumatically had lower volume ductility than those tested hydraulically. Deuterium gas tests had slightly lower ductility than helium gas tests. Burst pressures were not affected by burst media. Hydrogen-charged samples had lower volume ductility and slightly higher burst pressures than uncharged samples. Samples burst with deuterium gas fractured by quasi-cleavage near the inside wall. The results of the tests were used to improve a previously developed predictive finite-element model. The results show that predicting burst behavior requires as a material input the effect of hydrogen on the plastic strain to fracture from tensile tests. The burst test model shows that a reduction in the plastic strain to fracture of the material will result in lower volume ductility without a reduction in burst pressure …
Date: March 27, 2008
Creator: Morgan, M; Monica Hall, M; Ps Lam, P & Dean Thompson, D
System: The UNT Digital Library
Improved Bacterial and Viral Recoveries from 'Complex' Samples using Electrophoretically Assisted Acoustic Focusing (open access)

Improved Bacterial and Viral Recoveries from 'Complex' Samples using Electrophoretically Assisted Acoustic Focusing

Automated front-end sample preparation technologies can significantly enhance the sensitivity and reliability of biodetection assays [1]. We are developing advanced sample preparation technologies for biowarfare detection and medical point-of-care diagnostics using microfluidic systems with continuous sample processing capabilities. Here we report an electrophoretically assisted acoustic focusing technique to rapidly extract and enrich viral and bacterial loads from 'complex samples', applied in this case to human nasopharyngeal samples as well as simplified surrogates. The acoustic forces capture and remove large particles (> 2 {micro}m) such as host cells, debris, dust, and pollen from the sample. We simultaneously apply an electric field transverse to the flow direction to transport small ({le} 2 {micro}m), negatively-charged analytes into a separate purified recovery fluid using a modified H-filter configuration [Micronics US Patent 5,716,852]. Hunter and O'Brien combined transverse electrophoresis and acoustic focusing to measure the surface charge on large particles, [2] but to our knowledge, our work is the first demonstration combining these two techniques in a continuous flow device. Marina et al. demonstrated superimposed dielectrophoresis (DEP) and acoustic focusing for enhanced separations [3], but these devices have limited throughput due to the rapid decay of DEP forces. Both acoustic standing waves and electric fields …
Date: March 27, 2008
Creator: Ness, K.; Rose, K.; Jung, B.; Fisher, K. & Mariella, R. P., Jr.
System: The UNT Digital Library
LARP Long Nb3Sn Quadrupole Design. (open access)

LARP Long Nb3Sn Quadrupole Design.

A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.
Date: August 27, 2007
Creator: Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S. et al.
System: The UNT Digital Library
CANCELLED Microwave Ion Source and Beam Injection for anAccelerator-Driven Neut ron Source (open access)

CANCELLED Microwave Ion Source and Beam Injection for anAccelerator-Driven Neut ron Source

An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm{sup 2} and with atomic fraction > 90% was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D{sup +} beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create {approx} 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. They observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared …
Date: February 27, 2007
Creator: Vainionpaa, J. H.; Gough, R.; Hoff, M.; Kwan, J. W.; Ludewigt, B. A.; Regis, M. J. et al.
System: The UNT Digital Library
Temperature-controlled molecular depolarization gates in nuclear magnetic resonance (open access)

Temperature-controlled molecular depolarization gates in nuclear magnetic resonance

Down the drain: Cryptophane cages in combination with selective radiofrequency spin labeling can be used as molecular 'transpletor' units for transferring depletion of spin polarization from a hyperpolarized 'source' spin ensemble to a 'drain' ensemble. The flow of nuclei through the gate is adjustable by the ambient temperature, thereby enabling controlled consumption of hyperpolarization.
Date: February 27, 2008
Creator: Schroder, Leif; Schroder, Leif; Chavez, Lana; Meldrum, Tyler; Smith, Monica; Lowery, Thomas J. et al.
System: The UNT Digital Library
Cross sections for short pulse single and double ionization ofhelium (open access)

Cross sections for short pulse single and double ionization ofhelium

In a previous publication, procedures were proposed for unambiguously extracting amplitudes for single and double ionization from a time-dependent wavepacket by effectively propagating for an infinite time following a radiation pulse. Here we demonstrate the accuracy and utility of those methods for describing two-photon single and one-photon double ionization of helium. In particular it is shown how narrow features corresponding to autoionizing states are easily resolved with these methods.
Date: November 27, 2007
Creator: Palacios, Alicia; Rescigno, Thomas N. & McCurdy, C. William
System: The UNT Digital Library
Nondestructive Neutron And Gamma-Ray Technologies Applied To GNEP And Safeguards (open access)

Nondestructive Neutron And Gamma-Ray Technologies Applied To GNEP And Safeguards

In recent years, LLNL has developed methods for diagnosing significant quantities of special nuclear material (SNM). Homeland security problems have recently focused our attention on detection of shielded highly enriched uranium (HEU), which is a weak signal problem. Current and advanced safeguards applications will require working in the opposite extreme of strong but buried signals. We will review some of the technologies that have been developed at LLNL for homeland security applications and discuss how they might be used in support of international safeguards.
Date: June 27, 2007
Creator: Dougan, A D; Snyderman, N; Ham, Y; Nakae, L; Dietrich, D; Kerr, P et al.
System: The UNT Digital Library
Deterministic processing of alumina with ultra-short laser pulses (open access)

Deterministic processing of alumina with ultra-short laser pulses

Ultrashort pulsed lasers can accurately ablate materials which are refractory, transparent, or are otherwise difficult to machine by other methods. The typical method of machining surfaces with ultrashort laser pulses is by raster scanning, or the machining of sequentially overlapping linear trenches. Experiments in which linear trenches were machined in alumina at various pulse overlaps and incident fluences are presented, and the dependence of groove depth on these parameters established. A model for the machining of trenches based on experimental data in alumina is presented, which predicts and matches observed trench geometry. This model is then used to predict optimal process parameters for the machining of trenches for maximal material removal rate for a given laser.
Date: June 27, 2007
Creator: Furmanski, J; Rubenchik, A M; Shirk, M D & Stuart, B C
System: The UNT Digital Library
The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid (open access)

The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid

The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.
Date: August 27, 2007
Creator: Wang, L.; Wu, H.; Li, L. K.; Green, M. A.; Liu, C. S.; Li, L. Y. et al.
System: The UNT Digital Library
Use of the Lorentz-Boosted Frame Transformation to Simulate Free-Electron Laser Amplifier Physics (open access)

Use of the Lorentz-Boosted Frame Transformation to Simulate Free-Electron Laser Amplifier Physics

Recently [1]it has been pointed out that numerical simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz boosted frame. A particularly good example is that of short wavelength free-electron lasers (FELs) in which a high energy (E0>_ 250 MeV) electron beam interacts with a static magnetic undulator. In the optimal boost frame with Lorentz factor gamma F, the red-shifted FEL radiation and blue shifted undulator have identical wavelengths and the number of required time-steps (presuming the Courant condition applies) decreases by a factor of g2 F for fullyelectromagnetic simulation. We have adapted the WARP code [2]to apply this method to several FEL problems including coherent spontaneous emission (CSE) from pre-bunched e-beams, and strong exponential gain in a single pass amplifier configuration. We discuss our results and compare with those from the"standard" FEL simulation approach which adopts the eikonal approximation for propagation ofthe radiation field.
Date: July 27, 2008
Creator: Fawley, W. M. & Vay, J. L.
System: The UNT Digital Library
Enzymatic Ligation Creates Discrete Multi-Nanoparticle Building Blocks for Self-Assembly (open access)

Enzymatic Ligation Creates Discrete Multi-Nanoparticle Building Blocks for Self-Assembly

Enzymatic ligation of discrete nanoparticle?DNA conjugates creates nanoparticle dimer and trimer structures in which the nanoparticles are linked by single-stranded DNA, rather than double-stranded DNA as in previous experiments. Ligation is verified by agarose gel and small-angle X-ray scattering. This capability is utilized in two ways: first to create a new class of multiparticle building blocks for nanoscale self-assembly; second to develop a system which can amplify a population of discrete nanoparticle assemblies.
Date: May 27, 2008
Creator: Claridge, Shelley A.; Mastroianni, Alexander J.; Au, Yeung B.; Liang, Huiyang W.; Micheel, Christine M.; Frechet, Jean M.J. et al.
System: The UNT Digital Library
FRONT-END ASIC FOR HIGH RESOLUTION X-RAY SPECTROMETERS. (open access)

FRONT-END ASIC FOR HIGH RESOLUTION X-RAY SPECTROMETERS.

We present an application specific integrated circuit (ASIC) for high-resolution x-ray spectrometers. The ASIC is designed to read out signals from a pixelated silicon drift detector (SDD). Each hexagonal pixel has an area of 15 mmz and an anode capacitance of less than 100 fF. There is no integrated Field Effect transistor (FET) in the pixel, rather, the readout is done by wirebonding the anodes to the inputs of the ASIC. The ASIC provides 14 channels of low-noise charge amplification, high-order shaping with baseline stabilization, and peak detection with analog memory. The readout is sparse and based on low voltage differential signaling. An interposer provides all the interconnections required to bias and operate the system. The channel dissipates 1.6 mW. The complete 14-pixel unit covers an area of 210 mm{sup 2}, dissipates 12 mW cm{sup -2}, and can be tiled to cover an arbitrarily large detection area. We measured a preliminary resolution of 172 eV at -35 C on the 6 keV peak of a {sup 55}Fe source.
Date: October 27, 2007
Creator: De Geronimo,G.; Chen, W.; Fried, J.; Li, Z.; Pinelli, D. A.; Rehak, P. et al.
System: The UNT Digital Library
MICE Spectrometer Magnet System Progress (open access)

MICE Spectrometer Magnet System Progress

The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.
Date: August 27, 2007
Creator: Green, Michael A. & Virostek, Steve P.
System: The UNT Digital Library
The mechanism for iron-catalyzed alkene isomerization in solution (open access)

The mechanism for iron-catalyzed alkene isomerization in solution

Here we report nano- through microsecond time-resolved IR experiments of iron-catalyzed alkene isomerization in room-temperature solution. We have monitored the photochemistry of a model system, Fe(CO){sub 4}({eta}{sup 2}-1-hexene), in neat 1-hexene solution. UV-photolysis of the starting material leads to the dissociation of a single CO to form Fe(CO){sub 3}({eta}{sup 2}-1-hexene), in a singlet spin state. This CO loss complex shows a dramatic selectivity to form an allyl hydride, HFe(CO){sub 3}({eta}{sup 3}-C{sub 6}H{sub 11}), via an internal C-H bond-cleavage reaction in 5-25 ns. We find no evidence for the coordination of an alkene molecule from the bath to the CO loss complex, but do observe coordination to the allyl hydride, indicating that it is the key intermediate in the isomerization mechanism. Coordination of the alkene ligand to the allyl hydride leads to the formation of the bis-alkene isomers, Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) and Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2}. Because of the thermodynamic stability of Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) over Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2} (ca. 12 kcal/mol), nearly 100% of the alkene population will be 2-alkene. The results presented herein provide the first direct evidence for this mechanism in solution and suggest modifications to the currently accepted mechanism.
Date: May 27, 2008
Creator: Sawyer, Karma R.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P. & Harris, Charles B.
System: The UNT Digital Library
READOUT ASIC FOR 3D POSITION-SENSITIVE DETECTORS. (open access)

READOUT ASIC FOR 3D POSITION-SENSITIVE DETECTORS.

We describe an application specific integrated circuit (ASIC) for 3D position-sensitive detectors. It was optimized for pixelated CZT sensors, and it measures, corresponding to an ionizing event, the energy and timing of signals from 121 anodes and one cathode. Each channel provides low-noise charge amplification, high-order shaping, along with peak- and timing-detection. The cathode's timing can be measured in three different ways: the first is based on multiple thresholds on the charge amplifier's voltage output; the second uses the threshold crossing of a fast-shaped signal; and the third measures the peak amplitude and timing from a bipolar shaper. With its power of 2 mW per channel the ASIC measures, on a CZT sensor Connected and biased, charges up to 100 fC with an electronic resolution better than 200 e{sup -} rms. Our preliminary spectral measurements applying a simple cathode/mode ratio correction demonstrated a single-pixel resolution of 4.8 keV (0.72 %) at 662 keV, with the electronics and leakage current contributing in total with 2.1 keV.
Date: October 27, 2007
Creator: DE GERONIMO,G.; VERNON, E.; ACKLEY, K.; DRAGONE, A.; FRIED, J.; OCONNOR, P. et al.
System: The UNT Digital Library
Transport and Magnetization Properties of rolled RRP Nb3Sn Strands. (open access)

Transport and Magnetization Properties of rolled RRP Nb3Sn Strands.

Restack Rod Process (RRP) strands with 54 and 108 sub-elements were rolled from 0.7 mm diameter to 0.45 mm thickness to simulate the deformation of strands at the edges of Rutherford cables. Various diagnoses were then applied to assess performance and stability. Transport measurements were used to assess the effect of rolling on the critical current. Magnetization measurements were used to probe superconducting pathway bridging between deformed sub-elements. The copper residual resistivity ratio RRR was also measured to assess tin contamination due to thinned or ruptured diffusion barriers. While systematic changes were observed in all three measurements with increasing deformation, RRR showed the strongest changes. The implications of these measurements for cable stability, and their relationship to observations of the strand cross-section by light microscopy, are discussed.
Date: August 27, 2007
Creator: Ghosh, A. K.; Cooley, L. D.; Dietderich, D. R. & Sun, L.
System: The UNT Digital Library
DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR THE SAVANNAH RIVER SITE'S DEFENSE WASTE PROCESSING FACILITY (open access)

DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR THE SAVANNAH RIVER SITE'S DEFENSE WASTE PROCESSING FACILITY

The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) requested development of tooling for remote replacement of gaskets in mechanical Hanford connectors. The facility has compressed air supply, two master-slave manipulators (MSM's) and a lightweight robotic arm for operation of the remote tools. The Savannah River National Laboratory (SRNL) developed and tested multiple tools to perform the gasket replacement tasks. Separate pneumatic snap-ring removal tools that use the connector skirt as a reaction surface were developed for removal of the snap ring and spent gasket on both vertical and horizontal Hanford connectors. A pneumatic tool that clamps and centers on the jumper pipe ID was developed to simultaneously install the new gasket and snap ring. A pneumatic snap-ring-loading tool was developed that compresses the snap ring and places it in a groove in the installation tool. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. The entire system has been successfully tested using MSM's to manipulate the various tools. Deployment of the entire system is expected during FY08. The Hanford connector gasket replacement tooling has been successfully tested …
Date: November 27, 2007
Creator: Krementz, D
System: The UNT Digital Library
Screening and Ranking Framework (SRF) for Geologic CO2 Storage Site Selection on the Basis of Hse Risk (open access)

Screening and Ranking Framework (SRF) for Geologic CO2 Storage Site Selection on the Basis of Hse Risk

A screening and ranking framework (SRF) has been developedto evaluate potential geologic carbon dioxide (CO2) storage sites on thebasis of health, safety, and environmental (HSE) risk arising from CO2leakage. The approach is based on the assumption that CO2 leakage risk isdependent on three basic characteristics of a geologic CO2 storage site:(1) the potential for primary containment by the target formation; (2)the potential for secondary containment if the primary formation leaks;and (3) the potential for attenuation and dispersion of leaking CO2 ifthe primary formation leaks and secondary containment fails. Theframework is implemented in a spreadsheet in which users enter numericalscores representing expert opinions or published information along withestimates of uncertainty. Applications to three sites in Californiademonstrate the approach. Refinements and extensions are possible throughthe use of more detailed data or model results in place of propertyproxies.
Date: November 27, 2006
Creator: Oldenburg, Curtis M.
System: The UNT Digital Library
Further Stable methods for the calculation of partition functions (open access)

Further Stable methods for the calculation of partition functions

The extension to recursion over holes of the Gilleron and Pain method for calculating partition functions of a canonical ensemble of non-interacting bound electrons is presented as well as a generalization for the efficient computation of collisional line broadening.
Date: June 27, 2007
Creator: Wilson, B G; Gilleron, F & Pain, J
System: The UNT Digital Library
d-alpha correlation functions and collective motion in Xe+Au collisions at E/A=50 MeV (open access)

d-alpha correlation functions and collective motion in Xe+Au collisions at E/A=50 MeV

The interplay of the effects of geometry and collective motion on d-{alpha} correlation functions is investigated for central Xe+Au collisions at E/A=50 MeV. The data cannot be explained with out collective motion, which could be partly along the beam axis. A semi-quantitative description of the data can be obtained using a Monte -Carlo model, where thermal emission is superimposed on collective motion. Both the emission volume and the competition between the thermal and collective motion influence significantly the shape of the correlation function, motivating new strategies for extending intensity interferometry studies to massive particles.
Date: July 27, 2006
Creator: Verde, G.; Danielewicz, P.; Lynch, W.; Chan, C.; Gelbke, C.; Kwong, L. et al.
System: The UNT Digital Library
High Performance Plasma Operation on DIII-D During Extended Periods Without Boronization (open access)

High Performance Plasma Operation on DIII-D During Extended Periods Without Boronization

High performance plasmas, including both hybrid and advanced tokamak (AT) bench-mark discharges, were shown to be highly repeatable in DIII-D over 6000 plasma-seconds of operation during the 2006 campaign with no intervening boron depositions or high temperature bakes. Hybrid and AT discharges with identical control targets were repeated after the initial boronization at the beginning of the 2006 campaign, and again just before and after a second boronization near the end of the 2006 campaign. After a long entry vent between the 2006 and 2007 campaigns, similar discharges were again repeated after the standard high temperature baking and plasma cleanup, but prior to a boronization. Performance metrics, such as {beta}, confinement quality, and density control, were extremely well repeated. A low performance daily reference shot (DRS) was also established as a routine monitor of impurity influx. Over the 2006 campaign, the DRS database indicated little to no secular increase in impurity content. Oxygen content and Ni line emission were higher after the intervening vent, but were still minor contributors to plasma contamination. This indicates that erosion of boron films used for wall conditioning will not be a limitation to establishing long pulse high performance discharges in the new generation of …
Date: June 27, 2007
Creator: West, W. P.; Groth, M.; Hyatt, A. W.; Jackson, G. L.; Wade, M. R.; Greenfield, C. M. et al.
System: The UNT Digital Library
Exact solutions in a model of vertical gas migration (open access)

Exact solutions in a model of vertical gas migration

This work is motivated by the growing interest in injectingcarbon dioxide into deep geological formations as a means of avoidingatmospheric emissions of carbon dioxide and consequent global warming.One of the key questions regarding the feasibility of this technology isthe potential rate of leakage out of the primary storage formation. Weseek exact solutions in a model of gas flow driven by a combination ofbuoyancy, viscous and capillary forces. Different combinations of theseforces and characteristic length scales of the processes lead todifferent time scaling and different types of solutions. In the case of athin, tight seal, where the impact of gravity is negligible relative tocapillary and viscous forces, a Ryzhik-type solution implies square-rootof time scaling of plume propagation velocity. In the general case, a gasplume has two stable zones, which can be described by travelling-wavesolutions. The theoretical maximum of the velocity of plume migrationprovides a conservative estimate for the time of vertical migration.Although the top of the plume has low gas saturation, it propagates witha velocity close to the theoretical maximum. The bottom of the plumeflows significantly more slowly at a higher gas saturation. Due to localheterogeneities, the plume can break into parts. Individual plumes alsocan coalesce and from larger plumes. The …
Date: June 27, 2006
Creator: Silin, Dmitriy B.; Patzek, Tad W. & Benson, Sally M.
System: The UNT Digital Library
Algorithm for Rapid Tomography of Gas Concentrations (open access)

Algorithm for Rapid Tomography of Gas Concentrations

We present a new computed tomography method, the low third derivative (LTD) method, that is particularly suited for reconstructing the spatial distribution of gas concentrations from path-integral data for a small number of optical paths. The method finds a spatial distribution of gas concentrations that (1) has path integrals that agree with measured path integrals, and (2) has a low third spatial derivative in each direction, at every point. The trade-off between (1) and (2) is controlled by an adjustable parameter, which can be set based on analysis of the path-integral data. The method produces a set of linear equations, which can be solved with a single matrix multiplication if the constraint that all concentrations must be positive is ignored; the method is therefore extremely rapid. Analysis of experimental data from thousands of concentration distributions shows that the method works nearly as well as Smooth Basis Function Minimization (the best method previously available), yet is 100 times faster.
Date: June 27, 2000
Creator: Price, P. N.; Fischer, M. L.; Gadgil, A. J. & Sextro, R. G.
System: The UNT Digital Library