Illumina Unamplified Indexed Library Construction: An Automated Approach (open access)

Illumina Unamplified Indexed Library Construction: An Automated Approach

Manual library construction is a limiting factor in Illumina sequencing. Constructing libraries by hand is costly, time-consuming, low-throughput, and ergonomically hazardous, and constructing multiple libraries introduces risk of library failure due to pipetting errors. The ability to construct multiple libraries simultaneously in automated fashion represents significant cost and time savings. Here we present a strategy to construct up to 96 unamplified indexed libraries using Illumina TruSeq reagents and a Biomek FX robotic platform. We also present data to indicate that this library construction method has little or no risk of cross-contamination between samples.
Date: March 21, 2011
Creator: Hack, Christopher A.; Sczyrba, Alexander & Cheng, Jan-Fang
System: The UNT Digital Library
GROUNDWATER MONITORING REPORT GENERATION TOOLS - 12005 (open access)

GROUNDWATER MONITORING REPORT GENERATION TOOLS - 12005

Compliance with National and State environmental regulations (e.g. Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) aka SuperFund) requires Savannah River Site (SRS) to extensively collect and report groundwater monitoring data, with potential fines for missed reporting deadlines. Several utilities have been developed at SRS to facilitate production of the regulatory reports which include maps, data tables, charts and statistics. Components of each report are generated in accordance with complex sets of regulatory requirements specific to each site monitored. SRS developed a relational database to incorporate the detailed reporting rules with the groundwater data, and created a set of automation tools to interface with the information and generate the report components. These process improvements enhanced quality and consistency by centralizing the information, and have reduced manpower and production time through automated efficiencies.
Date: November 21, 2011
Creator: Lopez, N.
System: The UNT Digital Library
Ancient nature of alternative splicing and functions of introns (open access)

Ancient nature of alternative splicing and functions of introns

Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but introns retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.
Date: March 21, 2011
Creator: Zhou, Kemin; Salamov, Asaf; Kuo, Alan; Aerts, Andrea & Grigoriev, Igor
System: The UNT Digital Library
DAFNE Setup And Operation With the Crab-Waist Collision Scheme (open access)

DAFNE Setup And Operation With the Crab-Waist Collision Scheme

In the second half of 2007 a major upgrade has been implemented on the Frascati DA{Phi}NE collider in order to test the novel idea of Crab-Waist collisions. New vacuum chambers and permanent quadrupole magnets have been designed, built and installed to realize the new configuration. At the same time the performances of relevant hardware components, such as fast injection kickers and shielded bellows have been improved relying on new design concepts. The collider has been successfully commissioned in this new configuration. The paper describes several experimental results about linear and non-linear optics setup and optimization, damping of beam-beam instabilities and discusses the obtained luminosity performances. DA{Phi}NE [1] is the Frascati lepton collider working at the c m. energy of the {Phi} meson resonance (1020). It came in operation in 2001 and till summer 2007 provided luminosity, in sequence, to three different experiments which logged a total integrated luminosity of {approx} 4.4 fb{sup -1}. During these years the collider reached its best performances in terms of luminosity and background (L{sub peak} = 1.6 x 10{sup 32} cm{sup -2}s{sup -1} L{sub day} {approx} 10 pb{sup -1}) by means of several successive upgrades, relying on the experience gathered during the collider operations and …
Date: October 21, 2011
Creator: Milardi, C.; Alesini, D.; Biagini, M. E.; Biscari, C.; Boni, R.; Boscolo, M. et al.
System: The UNT Digital Library
2011 RENEWABLE ENERGY: SOLAR FUELS GORDON RESEARCH CONFERENCE (open access)

2011 RENEWABLE ENERGY: SOLAR FUELS GORDON RESEARCH CONFERENCE

The conference will present and discuss current science that underlies solar fuels production, and will focus on direct production pathways for production. Thus, recent advances in design and understanding of molecular systems and materials for light capture and conversion of relevance for solar fuels will be discussed. An important set of topics will be homogeneous, heterogeneous and biological catalysts for the multi-electron processes of water oxidation, hydrogen production and carbon dioxide reduction to useful fuels. Also, progress towards integrated and scalable systems will be presented. Attached is a copy of the formal schedule and speaker program and the poster program.
Date: January 21, 2011
Creator: Hupp, Joseph
System: The UNT Digital Library
Simplified models for mask roughness induced LER (open access)

Simplified models for mask roughness induced LER

The ITRS requires < 1.2nm line-edge roughness (LER) for the 22nm half-pitch node. Currently, we can consistently achieve only about 3nm LER. Further progress requires understanding the principle causes of LER. Much work has already been done on how both the resist and LER on the mask effect the final printed LER. What is poorly understood, however, is the extent to which system-level effects such as mask surface roughness, illumination conditions, and defocus couple to speckle at the image plane, and factor into LER limits. Presently, mask-roughness induced LER is studied via full 2D aerial image modeling and subsequent analysis of the resulting image. This method is time consuming and cumbersome. It is, therefore, the goal of this research to develop a useful 'rule-of-thumb' analytic model for mask roughness induced LER to expedite learning and understanding.
Date: February 21, 2011
Creator: McClinton, Brittany & Naulleau, Patrick
System: The UNT Digital Library
Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques (open access)

Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combined with conventional methods significantly improves the network detection ability in an efficient matter.
Date: January 21, 2011
Creator: Wang, J; Templeton, D C & Harris, D B
System: The UNT Digital Library
Quantitative evaluation of mask phase defects from through-focus EUV aerial images (open access)

Quantitative evaluation of mask phase defects from through-focus EUV aerial images

Mask defects inspection and imaging is one of the most important issues for any pattern transfer lithography technology. This is especially true for EUV lithography where the wavelength-specific properties of masks and defects necessitate actinic inspection for a faithful prediction of defect printability and repair performance. In this paper we will present a technique to obtain a quantitative characterization of mask phase defects from EUV aerial images. We apply this technique to measure the aerial image phase of native defects on a blank mask, measured with the SEMATECH Berkeley Actinic Inspection Tool (AIT) an EUV zoneplate microscope that operates at Lawrence Berkeley National Laboratory. The measured phase is compared with predictions made from AFM top-surface measurements of those defects. While amplitude defects are usually easy to recognize and quantify with standard inspection techniques like scanning electron microscopy (SEM), defects or structures that have a phase component can be much more challenging to inspect. A phase defect can originate from the substrate or from any level of the multilayer. In both cases its effect on the reflected field is not directly related to the local topography of the mask surface, but depends on the deformation of the multilayer structure. Using the …
Date: February 21, 2011
Creator: Mochi, Iacopo; Yamazoe, Kenji; Neureuther, Andrew & Goldberg, Kenneth A.
System: The UNT Digital Library
Absorber height effects on SWA restrictions and 'Shadow' LER (open access)

Absorber height effects on SWA restrictions and 'Shadow' LER

As extreme-ultraviolet lithography (EUVL) approaches introduction at the 22-nm half-pitch node, several key aspects of absorber height effects remain unexplored. In particular, sidewall angle (SWA) restrictions based on the height of the mask absorber has not yet been clearly defined. In addition, the effects of absorber height on line-edge roughness (LER) from shadowing has not been examined. We make an initial investigation into how tight SWA constraints are and the extent to which shadow LER alters basic LER. Our approach to SWA aims to find SWA restrictions based on 10% of the total CD error budget (10% of CD). Thus, we allot the SWA budget a {+-}0.2nm tolerance for 22nm half-pitch. New with EUVL is the off-axis illumination system. One potential pitfall that must be carefully monitored is the effect of mask absorber height blocking light from reaching, and therefore, correctly detecting, the base edge position of a feature. While mask features can correctly compensate sizing to target at the wafer, the effects of this shadowing on LER have not yet been investigated. Specifically, shadow LER may exacerbate or mitigate the inherent LER on the mask. Shadowing may also cause a difference in the observed LER on the right and …
Date: February 21, 2011
Creator: McClinton, Brittany & Naulleau, Patrick
System: The UNT Digital Library
Time-Resolved Synchrotron X-ray Diffraction on Pulse Laser Heated Iron in Diamond Anvil Cell (open access)

Time-Resolved Synchrotron X-ray Diffraction on Pulse Laser Heated Iron in Diamond Anvil Cell

The authors present time-resolved synchrotron x-ray diffraction to probe the {var_epsilon}-{delta} phase transition of iron during pulse-laser heating in a diamond anvil cell. The system utilizes a monochromatic synchrotron x-ray beam, a two-dimensional pixel array x-ray detector and a dual beam, double side laser-heating system. Multiple frames of the diffraction images are obtained in real-time every 22 ms over 500 ms of the entire pulse heating period. The results show the structural evolution of iron phases at 17 GPa, resulting in thermal expansion coefficient 1/V({Delta}V/{Delta}T){sub p} = 7.1 * 10{sup -6}/K for {var_epsilon}-Fe and 2.4 * 10{sup -5}/K for {gamma}-Fe, as well as the evidence for metastability of {gamma}-Fe at low temperatures below the {var_epsilon}-{gamma} phase boundary.
Date: September 21, 2011
Creator: Yoo, C. S.; Wei, H.; Dias, R.; Shen, G.; Smith, J.; Chen, J. Y. et al.
System: The UNT Digital Library
Scientific Data Services -- A High-Performance I/O System with Array Semantics (open access)

Scientific Data Services -- A High-Performance I/O System with Array Semantics

As high-performance computing approaches exascale, the existing I/O system design is having trouble keeping pace in both performance and scalability. We propose to address this challenge by adopting database principles and techniques in parallel I/O systems. First, we propose to adopt an array data model because many scientific applications represent their data in arrays. This strategy follows a cardinal principle from database research, which separates the logical view from the physical layout of data. This high-level data model gives the underlying implementation more freedom to optimize the physical layout and to choose the most effective way of accessing the data. For example, knowing that a set of write operations is working on a single multi-dimensional array makes it possible to keep the subarrays in a log structure during the write operations and reassemble them later into another physical layout as resources permit. While maintaining the high-level view, the storage system could compress the user data to reduce the physical storage requirement, collocate data records that are frequently used together, or replicate data to increase availability and fault-tolerance. Additionally, the system could generate secondary data structures such as database indexes and summary statistics. We expect the proposed Scientific Data Services approach …
Date: September 21, 2011
Creator: Wu, Kesheng; Byna, Surendra; Rotem, Doron & Shoshani, Arie
System: The UNT Digital Library
Parity Doubling and the S Parameter Below the Conformal Window (open access)

Parity Doubling and the S Parameter Below the Conformal Window

We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with N{sub f} = 2 and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when N{sub f} is increased from 2 to 6, motivating study of these trends as N{sub f} is increased further, toward the critical value for transition from confinement to infrared conformality.
Date: October 21, 2011
Creator: Appelquist, T; Babich, R; Brower, R C; Cheng, M; Clark, M A; Cohen, S D et al.
System: The UNT Digital Library
Particle Physics Outreach to Secondary Education (open access)

Particle Physics Outreach to Secondary Education

This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.
Date: November 21, 2011
Creator: Bardeen, Marjorie G.; Johansson, K. Erik & Young, M. Jean
System: The UNT Digital Library
Developing extensible lattice-Boltzmann simulators for general-purpose graphics-processing units (open access)

Developing extensible lattice-Boltzmann simulators for general-purpose graphics-processing units

Lattice-Boltzmann methods are versatile numerical modeling techniques capable of reproducing a wide variety of fluid-mechanical behavior. These methods are well suited to parallel implementation, particularly on the single-instruction multiple data (SIMD) parallel processing environments found in computer graphics processing units (GPUs). Although more recent programming tools dramatically improve the ease with which GPU programs can be written, the programming environment still lacks the flexibility available to more traditional CPU programs. In particular, it may be difficult to develop modular and extensible programs that require variable on-device functionality with current GPU architectures. This paper describes a process of automatic code generation that overcomes these difficulties for lattice-Boltzmann simulations. It details the development of GPU-based modules for an extensible lattice-Boltzmann simulation package - LBHydra. The performance of the automatically generated code is compared to equivalent purpose written codes for both single-phase, multiple-phase, and multiple-component flows. The flexibility of the new method is demonstrated by simulating a rising, dissolving droplet in a porous medium with user generated lattice-Boltzmann models and subroutines.
Date: December 21, 2011
Creator: Walsh, S C & Saar, M O
System: The UNT Digital Library
Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives (open access)

Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.
Date: July 21, 2011
Creator: Vitello, P A; Fried, L E; Howard, W M; Levesque, G & Souers, P C
System: The UNT Digital Library
Status of the Neutralized Drift Compression Experiment (NDCX-II) (open access)

Status of the Neutralized Drift Compression Experiment (NDCX-II)

The Neutralized Drift Compression Experiment (NDCX-II) is an 11 M$ induction accelerator project currently in construction at Lawrence Berkeley National Laboratory for warm dense matter (WDM) experiments investigating the interaction of ion beams with matter at elevated temperature and pressure. The machine consists of a lithium injector, induction accelerator cells, diagnostic cells, a neutralized drift compression line, a final focus solenoid, and a target chamber. The induction cells and some of the pulsed power systems have been reused from the decommissioned Advanced Test Accelerator at Lawrence Livermore National Laboratory after refurbishment and modification. The machine relies on a sequence of acceleration waveforms to longitudinally compress the initial ion pulse from 600 ns to less than 1 ns in {approx} 12 m. Radial confinement of the beam is achieved with 2.5 T pulsed solenoids. In the initial hardware configuration, 50 nC of Li{sup +} will be accelerated to 1.25 MeV and allowed to drift-compress to a peak current of {approx}40 A. The project started in the summer of 2009. Construction of the accelerator will be completed in the fall of 2011 and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel …
Date: April 21, 2011
Creator: Waldron, W. L. & Kwan, J. W.
System: The UNT Digital Library
THE EFFECT OF VARIOUS DETECTOR GEOMETRIES ON THE PERFORMANCE OF CZT USING ONE CRYSTAL (open access)

THE EFFECT OF VARIOUS DETECTOR GEOMETRIES ON THE PERFORMANCE OF CZT USING ONE CRYSTAL

CdZnTe (CZT) continues to be a major thrust interest mainly due to its potential application as a room temperature radiation detector. The performance of CZT detectors is directly related to the charge collection ability which can be affected by the configuration of the electrical contact. The charge collection efficiency is determined in part by the specific geometry of the anode contact which serves as the readout electrode. In this report, contact geometries including single pixel, planar, coplanar, and dual anode will be systematically explored by comparing the performance efficiencies of the detector using both low and high energy gamma rays. To help eliminate the effect of crystal quality variations, the contact geometries were fabricated on the same crystal detector with minimal polishing between contact placements.
Date: June 21, 2011
Creator: Washington, A.; Duff, M. & Teague, L.
System: The UNT Digital Library
Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies (open access)

Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.
Date: October 21, 2011
Creator: Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne et al.
System: The UNT Digital Library
Clouds and Chemistry in the Atmosphere of Extrasolar Planet HR8799b (open access)

Clouds and Chemistry in the Atmosphere of Extrasolar Planet HR8799b

Using the integral field spectrograph OSIRIS, on the Keck II telescope, broad near-infrared H and K-band spectra of the young exoplanet HR8799b have been obtained. In addition, six new narrow-band photometric measurements have been taken across the H and K bands. These data are combined with previously published photometry for an analysis of the planet's atmospheric properties. Thick photospheric dust cloud opacity is invoked to explain the planet's red near-IR colors and relatively smooth near-IR spectrum. Strong water absorption is detected, indicating a Hydrogen-rich atmosphere. Only weak CH{sub 4} absorption is detected at K band, indicating efficient vertical mixing and a disequilibrium CO/CH{sub 4} ratio at photospheric depths. The H-band spectrum has a distinct triangular shape consistent with low surface gravity. New giant planet atmosphere models are compared to these data with best fitting bulk parameters, T{sub eff} = 1100K {+-} 100 and log(g) = 3.5 {+-} 0.5 (for solar composition). Given the observed luminosity (log L{sub obs}/L{sub {circle_dot}} {approx} -5.1), these values correspond to a radius of 0.75 R{sub Jup{sub 0.12}{sup +0.17}} and mass {approx} 0.72 M{sub Jup{sub -0.6}{sup +2.6}} - strikingly inconsistent with interior/evolution models. Enhanced metallicity (up to {approx} 10 x that of the Sun) along with …
Date: March 21, 2011
Creator: Barman, T. S.; Macintosh, B. A.; Konopacky, Q. M. & Marois, C.
System: The UNT Digital Library
DUK - A Fast and Efficient Kmer Based Sequence Matching Tool (open access)

DUK - A Fast and Efficient Kmer Based Sequence Matching Tool

A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmer hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.
Date: March 21, 2011
Creator: Li, Mingkun; Copeland, Alex & Han, James
System: The UNT Digital Library
Thermal Stability Of Formohydroxamic Acid (open access)

Thermal Stability Of Formohydroxamic Acid

The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}C and thermally decomposed at 90 {degree}C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.
Date: October 21, 2011
Creator: Fondeur, F. F. & Rudisill, T. S.
System: The UNT Digital Library
New Low Emittance Lattice for the Super-B Accelerator (open access)

New Low Emittance Lattice for the Super-B Accelerator

New low emittance lattices have been designed for the asymmetric SuperB accelerator, aiming at a luminosity of 10{sup 36} cm{sup -2} s{sup -1}. Main optics features are two alternating arc cells with different horizontal phase advance, decreasing beam emittance and allowing at the same time for easy chromaticity correction in the arcs. Emittance can be further reduced by a factor of two for luminosity upgrade. Spin rotation schemes for the e{sup -} beam have been studied to provide longitudinal polarization at the IP, and implementation into the lattice is in progress.
Date: October 21, 2011
Creator: Biagini, M.E.; Boscolo, M.; Raimondi, P.; Tomassini, S.; Zobov, M.; /Frascati et al.
System: The UNT Digital Library
An experimental apparatus for diffraction-limites soft x-ray nanofocusing (open access)

An experimental apparatus for diffraction-limites soft x-ray nanofocusing

Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing.The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.
Date: October 21, 2011
Creator: Merthe, Daniel; Goldberg, Kenneth; Yashchuk, Valeriy; Yuan, Sheng; McKinney, Wayne; Celestre, Richard et al.
System: The UNT Digital Library
Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors (open access)

Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.
Date: September 21, 2011
Creator: Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R et al.
System: The UNT Digital Library