Resource Type

16 Matching Results

Results open in a new window/tab.

Lithographically-directed self-assembly of nanostructures (open access)

Lithographically-directed self-assembly of nanostructures

The combination of lithography and self-assembly provides apowerful means of organizing solution-synthesized nanostructures for awide variety of applications. We have developed a fluidic assembly methodthat relies on the local pinning of a moving liquid contact line bylithographically produced topographic features to concentratenanoparticles at those features. The final stages of the assembly processare controlled first by long-range immersion capillary forces and then bythe short-range electrostatic and Van der Waal's interactions. We havesuccessfully assembled nanoparticles from 50 nm to 2 nm in size usingthis technique and have also demonstrated the controlled positioning ofmore complex nanotetrapod structures. We have used this process toassemble Au nanoparticles into pre-patterned electrode structures andhave performed preliminary electrical characterization of the devices soformed. The fluidic assembly method is capable of very high yield, interms of positioning nanostructures at each lithographically-definedlocation, and of excellent specificity, with essentially no particledeposition between features.
Date: September 21, 2004
Creator: Liddle, J. Alexander; Cui, Yi & Alivisatos, Paul
System: The UNT Digital Library
FUDGE: A Program for Performing Nuclear Data Testing and Sensitivity Studies (open access)

FUDGE: A Program for Performing Nuclear Data Testing and Sensitivity Studies

We have developed a program called FUDGE that allows one to modify data from LLNL's nuclear database. After modifying data, FUDGE can then be instructed to process the data into the formats used by LLNL's deterministic (ndf) and the Monte Carlo (MCAPM) transport codes. This capability allows users to perform nuclear data sensitivity studies without modification of the transport modeling codes. FUDGE is designed to be user friendly (object-oriented) and fast (the modification and processing typically takes about a minute). It uses Python as a front-end, making it flexible and scriptable. Comparing, plotting and printing of the data are also supported. An overview of FUDGE will be presented as well as examples.
Date: September 21, 2004
Creator: Beck, B R
System: The UNT Digital Library
Laser- and Radar-based Mission Concepts for Suborbital and Spaceborne Monitoring of Seismic Surface Waves (open access)

Laser- and Radar-based Mission Concepts for Suborbital and Spaceborne Monitoring of Seismic Surface Waves

The development of a suborbital or spaceborne system to monitor seismic waves poses an intriguing prospect for advancing the state of seismology. This capability would enable an unprecedented global mapping of the velocity structure of the earth's crust, understanding of earthquake rupture dynamics and wave propagation effects, and event source location, characterization and discrimination that are critical for both fundamental earthquake research and nuclear non-proliferation applications. As part of an ongoing collaboration between LLNL and JPL, an advanced mission concept study assessed architectural considerations and operational and data delivery requirements, extending two prior studies by each organization--a radar-based satellite system (JPL) for earthquake hazard assessment and a feasibility study of space- or UAV-based laser seismometer systems (LLNL) for seismic event monitoring. Seismic wave measurement requirements include lower bounds on detectability of specific seismic sources of interest and wave amplitude accuracy for different levels of analysis, such as source characterization, discrimination and tomography, with a 100 {micro}m wave amplitude resolution for waves nominally traveling 5 km/s, an upper frequency bound based on explosion and earthquake surface displacement spectra, and minimum horizontal resolution (1-5 km) and areal coverage, in general and for targeted observations. For a radar system, corresponding engineering and operational …
Date: September 21, 2004
Creator: Foxall, W; Schultz, C A & Tralli, D M
System: The UNT Digital Library
MATRIX PRODUCT VARIATIONAL FORMULATION FOR LATTICE GAUGE THEORY. (open access)

MATRIX PRODUCT VARIATIONAL FORMULATION FOR LATTICE GAUGE THEORY.

For hamiltonian lattice gauge theory, we introduce the matrix product ansatz inspired from density matrix renormalization group. In this method, wavefunction of the target state is assumed to be a product of finite matrices. As a result, the energy becomes a simple function of the matrices, which can be evaluated using a computer. The minimum of the energy function corresponds to the vacuum state. We show that the S = 1/2 Heisenberg chain model are well described with the ansatz. The method is also applied to the two-dimensional S = 1/2 Heisenberg and U(1) plaquette chain models.
Date: September 21, 2004
Creator: SUGIHARA,T.
System: The UNT Digital Library
Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring (open access)

Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Date: September 21, 2004
Creator: Chavez, Francesca C.; Benson, Jody; Hanson, Stephanie; Mark, Carol & Wetovsky, Marvin A.
System: The UNT Digital Library
Reducing Complexity in Parallel Algebraic Multigrid Preconditioners (open access)

Reducing Complexity in Parallel Algebraic Multigrid Preconditioners

Algebraic multigrid (AMG) is a very efficient iterative solver and preconditioner for large unstructured linear systems. Traditional coarsening schemes for AMG can, however, lead to computational complexity growth as problem size increases, resulting in increased memory use and execution time, and diminished scalability. Two new parallel AMG coarsening schemes are proposed, that are based on solely enforcing a maximum independent set property, resulting in sparser coarse grids. The new coarsening techniques remedy memory and execution time complexity growth for various large three-dimensional (3D) problems. If used within AMG as a preconditioner for Krylov subspace methods, the resulting iterative methods tend to converge fast. This paper discusses complexity issues that can arise in AMG, describes the new coarsening schemes and examines the performance of the new preconditioners for various large 3D problems.
Date: September 21, 2004
Creator: De Sterck, H; Yang, U M & Heys, J
System: The UNT Digital Library
Effect of Nitrate on the Repassivation Potential of Alloy 22 in Chloride Containing Environment (open access)

Effect of Nitrate on the Repassivation Potential of Alloy 22 in Chloride Containing Environment

The study of Alloy 22 was undertaken in several selected nitrate/chloride (NO{sub 3}{sup -}/Cl{sup -}) electrolytes with chloride concentrations [Cl{sup -}] of 1.0, 3.5 and 6.0 molal with [NO{sub 3}{sup -}]/[Cl{sup -}] ratios of 0.05, 0.15 and 0.5 at temperatures up to 100 C. The repassivation potentials increased with increase in [NO{sub 3}{sup -}]/[Cl{sup -}] ratio and decreased with increase in temperature. The absolute [Cl{sup -}] was found to have less of an effect on the repassivation potential compared with temperature and the [NO{sub 3}{sup -}]/[Cl{sup -}]. Regression analyses were carried out to describe the relationship between the repassivation potential, temperature, [Cl{sup -}] and [NO{sub 3}{sup -}] for the conditions tested.
Date: September 21, 2004
Creator: Ilevbare, G.; King, K.; Gordon, S.; Elayat, H.; Gdowski, G. & Summers, T.
System: The UNT Digital Library
Quantum physics in neuroscience and psychology: A neurophysicalmodel of the mind/brain interaction (open access)

Quantum physics in neuroscience and psychology: A neurophysicalmodel of the mind/brain interaction

Neuropsychological research on the neural basis of behavior generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus terms having intrinsic mentalistic and/or experiential content (e.g., ''feeling,'' ''knowing,'' and ''effort'') are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three quarters of a century. Contemporary basic physical theory differs profoundly from classical physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with …
Date: September 21, 2004
Creator: Schwartz, Jeffrey M.; Stapp, Henry P. & Beauregard, Mario
System: The UNT Digital Library
2003 Archaea: Ecology, Metabolism and Molecular Biology (open access)

2003 Archaea: Ecology, Metabolism and Molecular Biology

The Gordon Research Conference (GRC) on 2003 Archaea: Ecology, Metabolism and Molecular Biology was held at Proctor Academy, Andover, NH from August 3-8, 2003. The Conference was well-attended with 150 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, ''free time'' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field. I want to personally thank you for your support of this Conference. As you know, in the interest of promoting the presentation of unpublished and frontier-breaking research, Gordon Research …
Date: September 21, 2004
Creator: Shand, Richard F.
System: The UNT Digital Library
2003 Plant Cell Walls Gordon Conference (open access)

2003 Plant Cell Walls Gordon Conference

This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.
Date: September 21, 2004
Creator: Cosgrove, Daniel J.
System: The UNT Digital Library
Analysis of Radionuclide Migration through a 200-m Vadose Zone Following a 16-year Infiltration Event (open access)

Analysis of Radionuclide Migration through a 200-m Vadose Zone Following a 16-year Infiltration Event

The CAMBRIC nuclear test was conducted beneath Frenchman Flat at the Nevada Test Site on May 14, 1965. The nuclear device was emplaced in heterogeneous alluvium, approximately 70 m beneath the ambient water table, which is itself 220 m beneath the ground surface. Approximately 10 years later, groundwater adjacent to the test was pumped steadily for 16 years to elicit information on the migration of residual radionuclide migration through the saturated zone. The pumping well effluent--containing mostly soluble radionuclides such as tritium, {sup 14}C, {sup 36}Cl, {sup 85}Kr, {sup 129}I, and {sup 106}Ru--was monitored, discharged to an unlined ditch, and allowed to flow towards Frenchman Lake over one kilometer away. Discharged water and radionuclides infiltrated into the ground and created an unexpected second experiment in which the migration of the effluent through the unsaturated zone back to the water table could be studied. In this paper, the pumping and effluent data are being utilized in conjunction with a series of geologic data, new radionuclide measurements, isotopic age-dating estimates, and vadose zone flow and transport models to better understand the movement of radionuclides between the ditch and the water table. Measurements of radionuclide concentrations in water samples produced from a water …
Date: September 21, 2004
Creator: Tompson, A. B.; Hudson, G. B.; Smith, D. K. & Hunt, J. R.
System: The UNT Digital Library
Spontaneous CP Violation and Quark Mass Ambiguities (open access)

Spontaneous CP Violation and Quark Mass Ambiguities

I explore the regions of quark masses where CP will be spontaneously broken in the strong interactions. The boundaries of these regions are controlled by the chiral anomaly, which manifests itself in ambiguities in the definition of non-degenerate quark masses. In particular, the concept of a single massless quark is ill defined.
Date: September 21, 2004
Creator: Creutz, M.
System: The UNT Digital Library
Modeling Electron-Cloud Effects in Heavy-Ion Accelerators (open access)

Modeling Electron-Cloud Effects in Heavy-Ion Accelerators

Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize results from several studies undertaken in conjunction with an effort to develop a self-consistent modeling capability: (1) Calculation of the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls; (2) Simulation of the effect of specified electron cloud distributions on ion beam dynamics; and (3) analysis of an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We also report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics. One conclusion from study (2) is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.
Date: September 21, 2004
Creator: Cohen, R H; Friedman, A; Lund, S M; Molvik, A W; Lee, E P; Azevedo, T et al.
System: The UNT Digital Library
Pulsed X-Ray Exposures and Modeling for Tungsten as an IFE First Wall Material (open access)

Pulsed X-Ray Exposures and Modeling for Tungsten as an IFE First Wall Material

Dry-wall inertial fusion energy (IFE) power plants must survive repeated exposure to target threats that include x-rays, ions, and neutrons. While this exposure may lead to sputtering, exfoliation, transmutation, and swelling, more basic effects are thermomechanical in nature. In the present work, we use the newly developed RadHeat code to predict time-temperature profiles in a tungsten armor, which has been proposed for use in an IFE power plant. The XAPPER x-ray damage experiment is used to simulate thermal effects by operating at fluences that produce similar peak temperatures, temperature gradients, or thermomechanical stresses. Soft x-ray fluences in excess of 1 J/cm{sup 2} are possible. Using RadHeat, we determine the XAPPER x-ray fluence needed to simulate thermomechanical effects expected in a typical IFE case of interest. Here, we report our findings and detail directions for future experiments and modeling.
Date: September 21, 2004
Creator: Latkowski, J. F.; Abbott, R. P. & Schmitt, R. C.
System: The UNT Digital Library
Stochastic Inversion of Electrical Resistivity Changes Using a Markov Chain, Monte Carlo Approach (open access)

Stochastic Inversion of Electrical Resistivity Changes Using a Markov Chain, Monte Carlo Approach

We describe a stochastic inversion method for mapping subsurface regions where the electrical resistivity is changing. The technique combines prior information, electrical resistance data and forward models to produce subsurface resistivity models that are most consistent with all available data. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. Attractive features include its ability to: (1) provide quantitative measures of the uncertainty of a generated estimate and, (2) allow alternative model estimates to be identified, compared and ranked. Methods that monitor convergence and summarize important trends of the posterior distribution are introduced. Results from a physical model test and a field experiment were used to assess performance. The stochastic inversions presented provide useful estimates of the most probable location, shape, and volume of the changing region, and the most likely resistivity change. The proposed method is computationally expensive, requiring the use of extensive computational resources to make its application practical.
Date: September 21, 2004
Creator: Ramirez, A; Nitao, J; Hanley, W; Aines, R; Glaser, R; Sengupta, S et al.
System: The UNT Digital Library
FUDGE: A program for performing nuclear data testing and sensitivity studies (open access)

FUDGE: A program for performing nuclear data testing and sensitivity studies

None
Date: September 21, 2004
Creator: Beck, B R
System: The UNT Digital Library