Resource Type

Month

2 Matching Results

Results open in a new window/tab.

Microwave Transmission Measurements of the Electron Cloud density In the Positron Ring of PEP-II (open access)

Microwave Transmission Measurements of the Electron Cloud density In the Positron Ring of PEP-II

Clouds of electrons in the vacuum chambers of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energy electrons clouds over substantial lengths of the beam pipe. We applied a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave which is independently excited and transmitted over a straight section of the accelerator. The modulation in the wave transmission which appears to increase in depth when the clearing solenoids are switched off, seem to be directly correlated to the electron cloud density in the section. Furthermore, we expect a larger phase shift of a wave transmitted through magnetic dipole field regionsif the transmitted wave couples with the gyration motion of the electrons. We have used this technique to measure the average electron cloud density (ECD) specifically for the first time in magnetic field regions of a new 4-dipole chicane in the positron ring of the PEP-II collider at SLAC. In this paper we present and discuss the measurements taken in the Low Energy Ring (LER) between 2006 and 2008.
Date: June 18, 2008
Creator: Pivi, Mauro T.F.; Krasnykh, Anatoly K.; Byrd, John; De Santis, Stefano; Sonnaad, Kiran G.; Caspers, Fritz et al.
System: The UNT Digital Library
Comment on"Elucidating the Mechanism of Nucleation near the Gas-Liquid Spinodal" (open access)

Comment on"Elucidating the Mechanism of Nucleation near the Gas-Liquid Spinodal"

In a recent Letter [1], Bhimalapuram, Chakrabarty and Bagchi (BCB) study the phase transformation mechanism of the Lennard-Jones fluid and the non-conserved Ising model. They compute the free energy as a function of the size of the largest droplet of the stable phase. In apparent contradiction to classical nucleation theory (CNT), they find that in both systems the free energy develops a minimum at subcritical cluster sizes. In this Comment we argue that this minimum is specific to the chosen order parameter, and that the observed behavior is in fact consistent with CNT. CNT states that the free energy F(N) of a single cluster of size N is a concave function with a maximum at the critical nucleus size N{sub c}. BCB, on the other hand, calculate the probability distribution of N*, the size of the largest cluster in the system, and compute the free energy {beta}F*(N*) = -ln P(N*), where {beta} = 1/k{sub B}T. This order parameter does not measure the size of a single cluster. Instead, when sampling small values of N*, one measures the statistical weight of configurations in which all clusters are at most N* in size. Hence a free energy penalty is incurred when one …
Date: June 18, 2008
Creator: Maibaum, Lutz & Maibaum, Lutz
System: The UNT Digital Library