A Genetic Approach to Identify Proteins that Interact with Eukaryotic Microtubule Severing Proteins via a Yeast Two Hybrid System (open access)

A Genetic Approach to Identify Proteins that Interact with Eukaryotic Microtubule Severing Proteins via a Yeast Two Hybrid System

Microtubules (MT) are regulated by multiple categories of proteins, including proteins responsible for severing MTs that are therefore called MT-severing proteins. Studies of katanin, spastin, and fidgetin in animal systems have clarified that these proteins are MT-severing. However, studies in plants have been limited to katanin p60, and little is known about spastin or fidgetin and their function in plants. I looked at plant genomes to identify MT-severing protein homologues to clarify which severing proteins exist in plants. I obtained data from a variety of eukaryotic species to look for MT-severing proteins using homology to human proteins and analyzed these protein sequences to obtain information on the evolution of MT-severing proteins in different species. I focused this analysis on MT-severing proteins in the maize and Arabidopsis thaliana genomes. I created evolutionary phylogenetic trees for katanin-p60, katanin-p80, spastin, and fidgetin using sequences from animal, plant, and fungal genomes. I focused on Arabidopsis spastin and worked to understand its functionality by identifying protein interaction partners. The yeast two-hybrid technique was used to screen an Arabidopsis cDNA library to identify putative spastin interactors. I sought to confirm the putative protein interactions by using molecular tools for protein localization such as the YFP system. …
Date: May 2020
Creator: Alhassan, Hassan H
System: The UNT Digital Library
Transient Expression of BABY BOOM, WUSCHEL, and SHOOT MERISTEMLESS from Virus-Based Vectors in Cotton Explants:  Can We Accelerate Somatic Embryogenesis to Improve Transformation Efficiency? (open access)

Transient Expression of BABY BOOM, WUSCHEL, and SHOOT MERISTEMLESS from Virus-Based Vectors in Cotton Explants: Can We Accelerate Somatic Embryogenesis to Improve Transformation Efficiency?

Upland cotton (Gossypium hirsutum L.) is the world's most prominent fiber crop. Cotton transformation is labor intensive and time consuming, taking 12 to 18 months for rooted T0 plants. One rate limiting step is the necessary production of somatic embryos. In other recalcitrant species, ectopic expression of three genes were shown to promote somatic embryogenesis: WUSCHEL (WUS), SHOOT MERISTEMLESS (STM), and BABY BOOM (BBM). WUS is responsible for maintaining stem-cell fate in shoot and floral meristems. STM is needed to establish and maintain shoot meristems. STM and WUS have similar functions but work in different pathways; overexpression of both together converts somatic cells to meristematic and embryogenic fate. BBM encodes an AP2/ERF transcription factor that is expressed during embryogenesis and ectopic expression of BBM reprograms vegetative tissues to embryonic growth. In prior studies, these genes were constitutively expressed, and cultures did not progress beyond embryogenesis because the embryogenic signal was not turned off. In our study, we set out to use these genes to increase the efficiency of cotton transformation and decrease the time it takes to regenerate a plant. A disarmed cotton leaf crumple virus (dCLCrV) vector delivers WUS, STM, or BBM into cotton tissue cultures through Agrobacterium tumefaciens …
Date: December 2019
Creator: Alejos, Marcos
System: The UNT Digital Library

Manipulation of Lipid Droplet Biogenesis for Enhanced Lipid Storage in Arabidopsis thaliana and Nicotiana benthamiana

In this study, I examined the use of mouse (Mus musculus) Fat Specific Protein 27 (FSP27) ectopically expressed in Arabidopsis thaliana and Nicotiana benthamiana as a means to increase lipid droplet (LD) presence in plant tissues. In mammalian cells, this protein induces cytoplasmic LD clustering and fusion and helps prevent breakdown of LDs contributing to the large, single LD that dominates adipocytes. When expressed in Arabidopsis thaliana and Nicotiana benthamiana, FSP27 retained its functionality and supported the accumulation of numerous and large cytoplasmic LDs, although it failed to produce the large, single LD that typifies adipose cells. FSP27 has no obvious homologs in plants, but a search for possible distant homologs in Arabidopsis returned a Tudor/PWWP/MBT protein coded for by the gene AT1G80810 which for the purposes of this study, we have called LIPID REGULATORY TUDOR DOMAIN CONTAINING GENE 1 (LRT1). As a possible homolog of FSP27, LRT1 was expected to have a positive regulatory effect on LDs in cells. Instead, a negative regulatory effect was observed in which disruption of the gene induced an accumulation of cytoplasmic LDs in non-seed tissue. A study of lrt1 mutants demonstrated that disruption this gene is the causal factor of the cytoplasmic LD …
Date: December 2021
Creator: Price, Ann Marie
System: The UNT Digital Library

Role of DEFECTIVE IN SYSTEMIC DEFENSE INDUCED BY ABIETANE DITERPENOID 1 (DSA1), a Putative O-Fucosyltransferase, in Plant Systemic Acquired Resistance (SAR)

Dehydroabietinal (DA), an abietane diterpenoid, was previously demonstrated to be a potent activator of systemic acquired resistance (SAR). DA also promotes flowering time in Arabidopsis thaliana by repressing expression of the flowering repressor FLOWERING LOCUS C (FLC) while simultaneously upregulating expression of FLOWERING LOCUS D (FLD), FLOWERING LOCUS VE (FVE) and RELATIVE OF EARLY FLOWERING 6 (REF6), a set of flowering time promoters. To further understand the mechanism underlying signaling by abietane diterpenoids, Arabidopsis mutants exhibiting reduced responsiveness to abietane diterpenoids were identified. One such mutant plant, ems2/7, exhibited SAR-deficiency and delayed flowering, which were found to be associated with two independent, but linked loci. The gene responsible for the SAR defect in ems2/7 was identified as DEFECTIVE IN SYSTEMIC DEFENSE INDUCED BY ABIETANE DITERPENOID 1 (DSA1). Similar to the missense mutant dsa1-1 identified in the mutant screen, the T-DNA insertion bearing null allele dsa1-2 exhibited SAR deficiency that could be complemented by a genomic copy of DSA1. The gene responsible for the delayed flowering phenotype of ems2/7 remains to be identified. DSA1 encodes a protein that is homologous to human protein O-fucosyltransferase 2. DSA1 is required for long-distance transport of the SAR signal. It is hypothesized that DSA1 is …
Date: May 2022
Creator: Mohanty, Devasantosh
System: The UNT Digital Library

Investigation of Gene Functions in the Cyanotrophic Bacterium Pseudomonas fluorescens NCIMB 11764

Pseudomonas fluorescens NCIMB 11764 (Pf11764) is one of a group of bacteria known as cyanotrophs that exhibit the unique ability to grow on toxic cyanide as the sole nitrogen source. This ability has previously been genetically linked to a conserved cluster of seven genes (Nit1C), the signature gene (nitC) coding for a nitrilase enzyme. Nitrilases convert nitriles to ammonia and a carboxylic acid. Still, for the Pf11764 NitC enzyme (Nit11764), no in vivo substrate has been identified, and the basis of the enzyme's requirement for cyanide growth has remained unclear. Therefore, the gene was cloned and the enzyme was characterized with respect to its structure and function. These efforts resulted in the unique discovery that, aside from its nitrilase activity, Nit11764 exhibits nuclease activity towards both DNA and RNA. This ability is consistent with computer analysis of the protein providing evidence of a preponderance of amino acids with a high probability for RNA binding. A Nit11764 knock-out mutant was shown to exhibit a higher sensitivity to both cyanide (KCN) and mitomycin C, both known to induce chromosomal damage. Thus, the overall conclusion is that Nit11764, and likely the entire Nit1C gene cluster, functions as a possible repair mechanism for overcoming …
Date: May 2022
Creator: Gullapalli, Jaya Swetha
System: The UNT Digital Library
Homologs of Mammalian Lysosomal Lipase in Arabidopsis and Their Roles in Lipid Droplet Dynamics (open access)

Homologs of Mammalian Lysosomal Lipase in Arabidopsis and Their Roles in Lipid Droplet Dynamics

Lipid droplets (LDs) are organelles with many functions in cells and numerous protein interactors facilitate their biogenesis, maintenance, and turnover. The mammalian lipase responsible for LD turnover during lipophagy, LipA, has two candidate homologs in Arabidopsis: MPL1 and LIP1. One or both of these plant homologs may function in a similar manner to mammalian LipA, providing an LD breakdown pathway. To test this hypothesis, wild type (WT) Arabidopsis plants, MPL1 over-expressing (OE) mutants, and T-DNA insertion mutants of MPL1 (mpl1) and LIP1 (lip1) were examined for LD phenotypes in normal conditions and in environments where LD numbers are known to fluctuate. Plants to be imaged by confocal microscopy were exposed to heat stress and wounding to increase LD accumulation, senescence was induced in leaves to deplete lipids, and LDs were imaged throughout the day/night period to observe their diurnal regulation. The mutation of both MPL1 and LIP1 lead to an increase in LDs within the leaf mesophyll cells, although the spatial distribution of the LDs differed between the two mutants. mpl1 mutants had disrupted diurnal regulation of their LDs, but lip1 mutants did not. Alternately, lip1 mutants retained LDs during dark-induced senescence, and mpl1 mutants did not. Together these results …
Date: December 2017
Creator: McClinchie, Elizabeth A
System: The UNT Digital Library
Development of von Willebrand Factor Zebrafish Mutant Using CRISPR/Cas9 Mediated Genome Editing (open access)

Development of von Willebrand Factor Zebrafish Mutant Using CRISPR/Cas9 Mediated Genome Editing

von Willebrand factor (VWF) protein acts in the intrinsic coagulation pathway by stabilizing FVIII from proteolytic clearance and at the site of injury, by promoting the adhesion and aggregation of platelets to the exposed subendothelial wall. von Willebrand disease (VWD) results from quantitative and qualitative deficiencies in VWF protein. The variability expressivity in phenotype presentations is in partly caused by the action of modifier genes. Zebrafish has been used as hemostasis animal model. However, it has not been used to evaluate VWD. Here, we report the development of a heterozygote VWF mutant zebrafish using the genome editing CRISPR/Cas9 system to screen for modifier genes involved in VWD. We designed CRISPR oligonucleotides and inserted them into pT7-gRNa plasmid. We then prepared VWF gRNA along with the endonuclease Cas9 RNA from Cas9 plasmid. We injected these two RNAs into 1-4 cell-stage zebrafish embryos and induced a mutation in VWF exon 29 of the zebrafish with a mutagenesis rate of 16.6% (3/18 adult fish). Also, we observed a germline transmission with an efficiency rate of 5.5% (1/18 adult fish). We obtained a deletion in exon 29 which should result in truncated VWF protein.
Date: May 2017
Creator: Toffessi Tcheuyap, Vanina
System: The UNT Digital Library

Multi-Omics Based Investigation of Distinct Early Oxidative Stress Responses of Saccharomyces cerevisiae to Various Oxidants

The early signaling mechanism(s) that control oxidant perception and signal transduction leading to activation of the antioxidant defense response and survival mechanisms tailored toward specific oxidative insult remains unknown. Here, we identified early changes in metabolome and proteome of S. cerevisiae in response to hydrogen peroxide, menadione, cumene hydroperoxide, and diamide. Firstly, global untargeted LC–MS/MS analysis allowed us to identify 196 proteins in response to hydrogen peroxide, 569 proteins in response to cumene hydroperoxide, 369 proteins in response to menadione and 207 proteins in response to diamide that were significantly regulated at 3 min after exposure. We revealed that each oxidant triggered unique signaling mechanisms associated with survival and repair mechanisms as early as 3 minutes of post treatment with a set of proteins that uniquely responded to the particular oxidant. In addition, our comprehensive pathway analysis revealed signaling pathways and the molecular players that are regulated globally by all oxidants at early time points namely Ran, mTOR, Rho, and eIF2. Additionally, we analyzed metabolic response using targeted GC-MS/MS that allowed us to identity 35 metabolites that were consistently detected in all samples at 3 min of exposure. These metabolites showed distinct response to the four oxidants in carbohydrate metabolism, …
Date: May 2021
Creator: Pandey, Prajita
System: The UNT Digital Library
Cloacal Microbiota of Captive-bred and Wild Attwater’s Prairie-chicken, Tympanuchus Cupido Attwateri (open access)

Cloacal Microbiota of Captive-bred and Wild Attwater’s Prairie-chicken, Tympanuchus Cupido Attwateri

The Attwater’s prairie-chicken (Tympanuchus cupido attwateri; APC) is a species of grouse native to Texas coastal prairies and is on the critically endangered species list as a result of habitat destruction and overhunting. All of the current populations were captively bred and released into the wild. Survivorship for released APCs is very low, and individuals seldom survive to reproduce in the wild. One factor contributing to this may be an alteration in the gut microbiota as a result of captivity. Factors potentially influencing the gut microbial composition in captivity include antibiotic therapy, stress, and a predominantly commercially formulated diet. Recent studies have begun to shed light on the importance of the host microbial endosymbionts. Antibiotic administration, stress, diet, age, genotype and other factors have been shown to influence microbial populations in the gastrointestinal tracts of many different vertebrates. Sequencing of 16S rRNA gene amplicons on the Ion Torrent™ platform was used in this study to identify groups of bacteria in the cloacas as a surrogate for the gut microbiota in the APC. Antibiotic-treated and untreated birds, wild-hatched and captive-bred birds, and individuals sampled before and after release to the wild were examined. Significant differences were found between wild-hatched and captive …
Date: August 2014
Creator: Simon, Stephanie E.
System: The UNT Digital Library
Analysis of Mature and Young Thrombocytes in Zebrafish (open access)

Analysis of Mature and Young Thrombocytes in Zebrafish

Eukaryotic platelets are small cell fragments that are released into the bloodstream from megakaryocytes, and their production is initiated in the bone marrow. They are mainly involved in blood hemostasis and thrombus formation. The newly synthesized platelets are called reticulated platelets or young platelets. Zebrafish thrombocytes are equivalent to mammalian platelets and have similar characteristics and functions. Likewise, zebrafish has both young and mature thrombocytes. Only young thrombocytes as reticulated platelets are labeled with thiazole orange. Similarly, labeling zebrafish thrombocytes with a specific concentration of DiI-C18 showed two populations of thrombocytes (DiI+ and DiI-). Again, only young thrombocytes showed DiI+ labeling. The mechanism of selective labeling of young thrombocytes by is unknown. Furthermore, there is no zebrafish line where young and mature thrombocytes are differentially labeled with fluorescence proteins. Therefore, in this study, we identified and confirmed that the RFP labeled cells of Glofish were young thrombocytes. In addition, we found that myosin light chain 2 (MLC2) promoter is expressed in young thrombocytes. We also generated a transgenic zebrafish line, GloFli fish, where the young and mature thrombocytes are labeled with red and green fluorescence proteins respectively. Furthermore, this study showed a two-fold increase in glycerol-phospholipids (GP) in mature thrombocytes …
Date: August 2018
Creator: Fallatah, Weam
System: The UNT Digital Library
Revisiting the Neuroprotective Role of 17B-Estradiol (E2): A Multi-Omics Based Analysis of the Rat Brain and Serum (open access)

Revisiting the Neuroprotective Role of 17B-Estradiol (E2): A Multi-Omics Based Analysis of the Rat Brain and Serum

The ovarian hormone 17β-estradiol (E2) is one of the central regulators of the female reproductive system. E2 is also a pleiotropic regulator since it can exert its non-reproductive role on other organ systems. E2 is neuroprotective, it maintains body's energy homeostasis, participates in various repair mechanism and is required for neural development. However, there is a substantial evidence suggesting that there might be a molecular reprogramming of E2's action when it is supplied exogenously after E2 deprivation. Though the length of E2 deprivation and age has been linked to this phenomenon, the molecular components and how they activate this reprogramming is still elusive. Our main goal was to perform global proteomics and metabolomics study to identify the molecular components and their interaction networks that are being altered in the brain and serum after a short-term E2 treatment following ovariectomy (OVX) in Sprague Dawley rats. One of the strength of our global study is that it gave us extensive information on the brain proteome itself by identification of a wide number of proteins in different brain sections. By analyzing the differentially expressed proteins, our proteomics study revealed 49 different networks to be altered in 7 sections of the brain. Most of …
Date: August 2018
Creator: Zaman, Khadiza
System: The UNT Digital Library
Studies in Trypsin as an Alarm Substance in Zebrafish (open access)

Studies in Trypsin as an Alarm Substance in Zebrafish

Previous studies have shown that fish release alarming substances into the water to alert their kin to escape from danger. In our laboratory, we found that zebrafish produce trypsin and release it from their gills into the environment when they are under stress. By placing the zebrafish larvae in the middle of a small tank and then placing trypsin at one end of the tank, we observed that the larvae moved away from the trypsin zone and almost to the opposite end of the tank. This escape response was significant and did not occur in response to the control substances, bovine serum albumin (BSA), Russell's viper venom (RVV), and collagen. Also, previously, we had shown that the trypsin could act via a protease-activated receptor-2 (PAR2) on the surface of the cells. Therefore, we hypothesized that trypsin would induce a change in neuronal activity in the brain via PAR2-mediated signaling in cells on the surface of the fish body. To investigate whether the trypsin-responsive cells were surface cells, we generated a primary cell culture of zebrafish keratinocytes, confirmed these cells' identity by specific marker expression, and then incubated these cells with the calcium indicator Fluo-4 and exposed them to trypsin. By …
Date: August 2018
Creator: Alsrhani, Abdullah Falleh
System: The UNT Digital Library
Lipogenic Proteins in Plants: Functional Homologues and Applications (open access)

Lipogenic Proteins in Plants: Functional Homologues and Applications

Although cytoplasmic lipid droplets (LDs) are the major reserves for energy-dense neutral lipids in plants, the cellular mechanisms for packaging neutral lipids into LDs remain poorly understood. To gain insights into the cellular processes of neutral lipid accumulation and compartmentalization, a necessary step forward would be to characterize functional roles of lipogenic proteins that participate in the compartmentalization of neutral lipids in plant cells. In this study, the lipogenic proteins, Arabidopsis thaliana SEIPIN homologues and mouse (Mus Musculus) fat storage-inducing transmembrane protein 2 (FIT2), were characterized for their functional roles in the biogenesis of cytoplasmic LDs in various plant tissues. Both Arabidopsis SEIPINs and mouse FIT2 supported the accumulation of neutral lipids and cytoplasmic LDs in plants. The three Arabidopsis SEIPIN isoforms play distinct roles in compartmentalizing neutral lipids by enhancing the numbers and sizes of LDs in various plant tissues and developmental stages. Further, the potential applications of Arabidopsis SEIPINs and mouse FIT2 in engineering neutral lipids and terpenes in plant vegetative tissues were evaluated by co-expressing these and other lipogenic proteins in Nicotiana benthamiana leaves. Arabidopsis SEIPINs and mouse FIT2 represent effective tools that may complement ongoing strategies to enhance the accumulation of desired neutral lipids and terpenes …
Date: December 2018
Creator: Cai, Yingqi
System: The UNT Digital Library
Compartmentalization of Jojoba Seed Lipid Metabolites (open access)

Compartmentalization of Jojoba Seed Lipid Metabolites

Seeds from the desert shrub Simmondsia chinensis (jojoba) are one of the only known natural plant sources to store a majority of its oil in the form of liquid wax esters (WE) instead of triacylglycerols (TAGs) and these oils account for ~55% of the seed weight. Jojoba oil is highly valued as cosmetic additives and mechanical lubricants, yet despite its value much is still unknown about its neutral lipid biosynthetic pathways and lipid droplet packaging machinery. Here, we have used a multi-"omics" approach to study how spatial differences in lipid metabolites, gene expression, and lipid droplet proteins influence the synthesis and storage of jojoba lipids. Through these studies mass spectrometry analyses revealed that WEs are compartmentalized primarily in the cotyledonary tissues, whereas TAGs are, surprisingly, localized to the embryonic axis tissues. To study the differences in gene expression between these two tissues, a de novo transcriptome was assembled from high throughput RNAseq data. Differential gene expression analysis revealed that the Jojoba Wax Synthase, which catalyzes the formation of wax esters, and the Diacylglycerol O-Acyltransferase1, which catalyzes the final acylation of triacylglycerol synthesis, were differentially expressed in the cotyledons and embryonic axis tissues, respectively. Furthermore, through proteomic analysis of lipid droplet …
Date: December 2018
Creator: Sturtevant, Drew
System: The UNT Digital Library

Studies on Intrinsic Coagulation Pathway of Zebrafish

In the past couple of decades, the zebrafish has been widely used to study hemostatic disorders. In this study, we generated a CRISPR/Cas9 mediated zebrafish mutant that contains a 55-nucleotide insertion in exon 29 of the von Willebrand factor (vwf) gene. The mutants had impaired ristocetin-mediated agglutination of whole blood, prolonged PTT and more bleeding in the lateral incision compared to wild-type fish. The bleeding phenotype observed here is similar to the phenotype observed in vwf knockout mice and patients with von Willebrand disease (VWD). The mutant model developed here can thus be used for exploring the role of Vwf in angiogenesis and for developing gene therapy. The deficiency of VWF causes VWD and the etiology remains unknown in 30% of Type 1 VWD cases. Previous studies have identified that the ABO blood group and ST3GAL4 (glycosyltransferases) are involved in the regulation of VWF levels. Since VWF is heavily glycosylated, we hypothesized that other glycosyltransferases may also be involved in regulating VWF. We performed a knockdown screen of 234 glycosyltransferase genes and identified 14 genes that altered Vwf levels. The sequencing of these genes in Type 1 VWD patients could help identify novel mutations to decipher the molecular basis for …
Date: August 2021
Creator: Iyer, Neha
System: The UNT Digital Library

Exploring Flavonoid Glycosylation in Kudzu (Pueraria lobata)

The isoflavones in kudzu roots, especially the C-glycosylated isoflavone puerarin, have been linked to many health benefits. Puerarin contains a carbon-carbon glycosidic bond that can withstand hydrolysis. The C-glycosylation reaction in the biosynthesis of puerarin has not been thoroughly investigated, with conflicting reports suggesting that it could take place on daidzein, isoliquiritigenin, or 2,7,4ʹ-trihydroxyisoflavanone. Kudzu species were identified for use in comparative transcriptomics. A non-puerarin producing kudzu was identified as Pueraria phaseoloides and a puerarin producing kudzu was identified as Pueraria montana lobata. Through the use of the plant secondary product glycosyltransferase (PSPG) motif, glycosyltransferases (UGTs) were identified from the transcriptomes. The UGTs that had higher digital expression in P. m. lobata were examined further using additional tools to home in on the UGT that could be responsible for puerarin biosynthesis. One of the UGTs identified, UGT71T5, had previously been characterized from kudzu as a C-glycosyltransferase involved in puerarin biosynthesis through in vitro enzyme activity (with daidzein) and a gain of function approach in soybean hairy roots. Previous studies have not supported the end-product of a pathway such as daidzein as the target for C-glycosylation, and no genetic analysis of UGT function had been conducted in kudzu. The activity of …
Date: August 2021
Creator: Adolfo, Laci Michelle
System: The UNT Digital Library

Effect of Phosphorus Starvation on Metabolism and Spatial Distribution of Phosphatidylcholine in Medicago truncatula Wild-Type and PDIL3 Genotypes

Symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. Within nodule cells, N-fixing rhizobia are surrounded by plant-derived symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. First, I investigated the impact of P deprivation on wild-type Medicago truncatula plants. My observations that plants had impaired SNF activity, reduced growth, and accumulated less phosphate in P-deficient tissues (leaves, roots and nodules) is consistent with those of similar previous studies. Galactolipids decreased with increase in phospholipids in all P-starved organs. Matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI-MSI) of phosphatidylcholine (PC) species in nodules showed that under low P environments distributions of some PC species changed, indicating that membrane lipid remodeling during P stress is not uniform across the nodule. Secondly, a metabolomics study was carried out to test the alterations in the metabolic profile of the nodules in P-stress. GC-MS based untargeted metabolomics showed increased levels of amino acids and sugars and decline in amounts of organic acids in P deprived nodules. Subsequently, …
Date: August 2021
Creator: Dokwal, Dhiraj
System: The UNT Digital Library

Studies on Tissue Factor Pathway Inhibitor in Zebrafish

Tissue Factor Pathway Inhibitor (TFPI) is an anticoagulant protein containing three Kunitz domains, K1, K2 and K3. K1 inhibits Factor VIIa, K2 inhibits Factor Xa, and K3 enhances the Factor Xa inhibition by its interaction with Protein S. Since zebrafish is an excellent genetic model, we hypothesized that TFPI regulation could be studied using this model. As a first step, we confirmed the presence of tfpia in zebrafish. Subsequently, we performed knockdown of tfpia, and knockout of tfpia in K3 domain using CRISPR/Cas9. Both the tfpia knockdown and tfpia homozygous deletion mutants showed increased coagulation activities. Our data suggest that zebrafish tfpia is an orthologue for human TFPIα, and silencing it results in a thrombotic phenotype. We then optimized the piggyback knockdown method, where we could simultaneously piggyback 3 or 6 ASOs corresponding to 3 or 6 genes, respectively, using one VMO. These multiple gene knockdowns will increase the efficiency of genome-wide knockdowns. Since there are no studies on chromatin remodeling that control TFPI expression, we hypothesized that the genome-wide knockdowns of the Chromatin Binding and Regulatory Proteins (CBRPs) in zebrafish could help identify novel tfpia gene regulators. We chose 69 CBRPs and subjected them to simultaneous gene knockdowns. Our …
Date: August 2021
Creator: Raman, Revathi
System: The UNT Digital Library

Proteomic-Based Assessment of Estrogenic Endocrine Disruption in Hyalella azteca

In our studies, we used the environmentally important crustacean Hyalella azteca (H. azteca) as an invertebrate model and 17β-estradiol (E2) as a representative of environmental estrogenic endocrine disrupting compounds (EDCs) for proteomics-based investigations of endocrine disruptions in an aquatic ecosystem. Using liquid chromatography coupled with tandem mass spectrometry, our investigation focused for the first time on the recognition of biological and molecular events affected by E2 exposure with the long-term goal of identifying panels of potential biomarkers for environmental estrogenic endocrine disruption. We analyzed E2-induced changes in protein expressions in female and male H. azteca using label-free quantitative proteomics. With discovery-driven shotgun approach, we identified over 50 proteins that were affected by E2 in a sex-specific manner in our model organism. We selected four E2-regulated proteins (vitellogenin, cuticle protein CPR RR, titin and clumping factor A-like protein) for validation by parallel reaction monitoring-based targeted proteomics. Altogether, our proteomics studies have characterized for the first time E2-triggered endocrine disruption in H. azteca and recognized sex-specific changes in the male and female H. azteca's proteome after aquatic exposure to this estrogen. Through targeted proteomics, we were also able to quantitatively characterize a panel of selected proteins that showed distinctive sex-specific responses to …
Date: December 2023
Creator: Prokai, Marcel Laszlo
System: The UNT Digital Library
Glucose-Induced Developmental Delay is Modulated by Insulin Signaling and Exacerbated in Subsequent Glucose-Fed Generations in Caenorhabditis elegans (open access)

Glucose-Induced Developmental Delay is Modulated by Insulin Signaling and Exacerbated in Subsequent Glucose-Fed Generations in Caenorhabditis elegans

In this study, we have used genetic, cell biological and transcriptomic methods in the nematode C. elegans as a model to examine the impact of glucose supplementation during development. We show that a glucose-supplemented diet slows the rate of developmental progression (termed "glucose-induced developmental delay" or GIDD) and induces the mitochondrial unfolded protein response (UPRmt) in wild-type animals. Mutation in the insulin receptor daf-2 confers resistance to GIDD and UPRmt in a daf-16-dependent manner. We hypothesized that daf-2(e1370) animals alter their metabolism to manage excess glucose. To test this, we used RNA-sequencing which revealed that the transcriptomic profiles of glucose-supplemented wildtype and daf-2(e1370) animals are distinct. From this, we identified a set of 27 genes which are both exclusively upregulated in daf-2(e1370) animals fed a glucose-supplemented diet and regulated by daf-16, including a fatty acid desaturase (fat-5), and two insulin-like peptides (ins-16 and ins-35). Mutation of any of these genes suppresses the resistance of daf-2(e1370) to GIDD. Additionally, double mutation of ins-16 and ins-35 in a daf-2(e1370) background results in an increase in constitutive dauer formation which is suppressed by glucose supplementation. Further investigation of the insulin-like peptides revealed that ins-16 mutation in a wild-type background results in upregulation of …
Date: December 2023
Creator: Nahar, Saifun
System: The UNT Digital Library

Investigating the Molecular Framesworks of Phloem-Cap Fiber Development in Cotton (Gossypium hirsutum)

The current study focuses on the vascular cambium and the reiterative formation of phloem fiber bundles in cotton stems. The role of the TDIF-PXY-WOX pathway was examined in regulating cambial activity and the differentiation of phloem fibers. A study was conducted to identify and characterize the cotton WOX family genes, focusing on WOX4 and WOX14, aiming to identify and analyze their phylogenetic relationships, tissue-specific expression profiles, functional roles, and metabolic consequences. Through a sequence analysis of the Gossypium hirsutum genome, 42 cotton loci were identified as WOX family members. GhWOX4 exhibited a close homology to 7 loci, while GhWOX14 displayed homology with 8 loci. Tissue-specific expression analysis revealed prominent expression patterns of GhWOX4 and GhWOX14 in cotton internodes and roots, suggesting their involvement in vascular tissue development. Functional studies utilizing VIGS (virus-induced gene silencing) demonstrated that the knockdown of GhWOX4 and GhWOX14 resulted in a significant reduction in stem diameter and bast fiber production. This result suggests that secondary phloem fiber development is regulated by GhWOX4 and GhWOX14 genes in cotton. Additionally, the metabolic profiling of VIGS plants revealed significant alterations in amino acids, organic acids, and sugars, with implications for primary metabolic pathways. These findings suggest that GhWOX4 and …
Date: December 2023
Creator: Kaur, Harmanpreet
System: The UNT Digital Library
Investigating Novel Streptomyces Bacteriophage Endolysins as Potential Antimicrobial Agents (open access)

Investigating Novel Streptomyces Bacteriophage Endolysins as Potential Antimicrobial Agents

As antibiotic resistance has become a major global threat, the World Health Organization has urgently called scientists for alternative strategies for control of bacterial infections. Endolysin, a protein encoded by a phage gene, can degrade bacterial peptidoglycan (PG). Currently, there are three endolysin products in the clinical phase. We, thus, are interested in exploring novel endolysins from Streptomyces phages as only a few of them have been experimentally characterized. Using bioinformatics tools, we identified nine functional domain groups from 250 Streptomyces phages putative endolysins. NootNoot gp34 (transglycosylase; Nt34lys), Nabi gp26 (amidase; Nb26lys), Tribute gp42 (PGRP; Tb42lys), and LazerLemon gp35 (CHAP; LL35lys) were selected for experimental studies. We hypothesized that (1) the proteins of interest will have the ability to degrade PG, and (2) the proteins will be potential antimicrobial agents against ESKAPE safe relatives. The results showed that LL35lys, Nb26lys and Tb42lys exhibit PG-degrading activity on zymography and hydrolysis assay. The enzymes (400 µg/mL) can reduce PG turbidity to 32-40%. The killing assay suggested that Tb42lys possess a boarder range (Escherichia coli, Pseudomonas putida, Acinetobacter baylyi and Klebsiella aerogenes). While Nb26lys can attack Gram-negative bacteria, LL35lys can only reduce the growth of the Gram-positive strains with an MIC90 of 2 …
Date: December 2023
Creator: Maneekul, Jindanuch
System: The UNT Digital Library

Fatty Acid Amide Hydrolases in Upland Cotton (Gossypium hirsutum L.) and the Legume Model Medicago truncatula

Fatty acid amide hydrolase (FAAH) is a widely conserved amidase in eukaryotes, best known for inactivating the signal of N-acylethanolamine (NAE) lipid mediators. In the plant Arabidopsis thaliana, FAAH-mediated hydrolysis of NAEs has been associated with numerous biological processes. Recently, the phylogenetic distribution of FAAH into two major branches (group I and II FAAHs) across angiosperms outside of Arabidopsis (and in other Brassicaceae), suggests a previously unrecognized complexity of this enzyme. Although A. thaliana has long been used to assess biological questions for plants, in this case it will fall short in understanding the significance of multiple FAAHs in other plant systems. Thus, in this study, I examined the role (s) of six FAAH isoforms in upland cotton (Gossypium hirsutum L.) and two FAAHs in the legume Medicago truncatula.
Date: December 2023
Creator: Arias Gaguancela, Omar Paul
System: The UNT Digital Library

Identification and Characterization of Genes Required for Symbiotic Nitrogen Fixation in Medicago truncatula Tnt1 Insertion Mutants

In this dissertation I am using M. truncatula as a model legume that forms indeterminate nodules with rhizobia under limited nitrogen conditions. I take advantage of an M. truncatula Tnt1 mutant population that provides a useful resource to uncover and characterize novel genes. Here, I focused on several objectives. First, I carried out forward and reverse genetic screening of M. truncatula Tnt1 mutant populations to uncover novel genes involved in symbiotic nitrogen fixation. Second, I focused on reverse genetic screening of two genes, identified as encoding blue copper proteins, and characterization of their mutants' potential phenotypes. Third, I further characterized a nodule essential gene, M. truncatula vacuolar iron transporter like 8 (MtVTL8), which encodes a nodule specific iron transporter. I characterized the expression pattern, expression localization and function of MtVTL8. Additionally, I characterized several residues predicted to be essential to function using a model based on the known crystal structure of Eucalyptus grandis vacuolar iron transporter 1 (EgVIT1), a homologous protein to MtVTL8. I identified several potential essential residues of the MtVTL8 protein, mutagenized them, and through complementation experiments in planta and in yeast assessed functionality of the resulting protein. This helped us to better understand the potential mechanism by …
Date: July 2023
Creator: Cai, Jingya
System: The UNT Digital Library