Resource Type

Language

Chemical reaction rates using the semiclassical Van-Vleck initialvalue representation (open access)

Chemical reaction rates using the semiclassical Van-Vleck initialvalue representation

A semiclassical IVR formulation using the Van-Vleck propagator has been used to calculate the flux correlation function and thereby reaction rate constants. This Van-Vleck formulation of the flux-flux correlation function is computationally as simple as the classical Wigner model. However unlike the latter, it has the ability to capture quantum interference/coherence effects. Classical trajectories are evolved starting from the dividing surface that separates reactants and products, and are evolved negatively in time. This formulation has been tested on model problems ranging from the Eckart barrier, double well to the collinear H + H{sub 2}.
Date: November 29, 2006
Creator: Venkataraman, Charulatha & Miller, William H.
System: The UNT Digital Library
Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering (open access)

Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering

The formation and evolution of massive red galaxies form a crucial test of theories of galaxy formation based on hierarchical assembly. In this Letter we use observations of the clustering of luminous red galaxies from the Boötes field and N-body simulations to argue that about of the most luminous satellite galaxies appear to undergo merging or disruption within massive halos between and 0.5.
Date: November 29, 2006
Creator: White, Martin; White, Martin; Zheng, Zheng; Brown, Michael J. I.; Dey, Arjun & Jannuzi, Buell T.
System: The UNT Digital Library
Comparison of kinetic and equilibrium reaction models insimulating gas hydrate behavior in porous media (open access)

Comparison of kinetic and equilibrium reaction models insimulating gas hydrate behavior in porous media

In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. The use of the equilibriumreaction model often appears to be justified and preferred for simulatingthe behavior of gas hydrates, given that the computational demands forthe kinetic reaction model far exceed those for the equilibrium reactionmodel.
Date: November 29, 2006
Creator: Kowalsky, Michael B. & Moridis, George J.
System: The UNT Digital Library
Comparison of kinetic and equilibrium reaction models insimulating the behavior of porous media (open access)

Comparison of kinetic and equilibrium reaction models insimulating the behavior of porous media

In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. Assuming validity of the mostaccurate kinetic reaction model that is currently available, the use ofthe equilibrium reaction model often appears to be justified andpreferred for simulating the behavior of gas hydrates, given that thecomputational demands for the kinetic reaction model far exceed those forthe equilibrium reaction model.
Date: November 29, 2006
Creator: Kowalsky, Michael B. & Moridis, George J.
System: The UNT Digital Library
IN SITU URANIUM STABILIZATION BY MICROBIAL METABOLITES (open access)

IN SITU URANIUM STABILIZATION BY MICROBIAL METABOLITES

Soil contaminated with U was the focus of this study in order to develop in-situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE) Savannah River Site (SRS) as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >106 cells/g wet soil. Pyomelanin demonstrated U chelating and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in field tests demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments.
Date: November 29, 2006
Creator: Turick, C; Anna Knox, A; Chad L Leverette,C & Yianne Kritzas, Y
System: The UNT Digital Library
Reduction of Large Detailed Chemical Kinetic Mechanisms for Autoignition Using Joint Analyses of Reaction Rates and Sensitivities (open access)

Reduction of Large Detailed Chemical Kinetic Mechanisms for Autoignition Using Joint Analyses of Reaction Rates and Sensitivities

A new technique of reduction of detailed mechanisms for autoignition, which is based on two analysis methods is described. An analysis of reaction rates is coupled to an analysis of reaction sensitivity for the detection of redundant reactions. Thresholds associated with the two analyses have a great influence on the size and efficiency of the reduced mechanism. Rules of selection of the thresholds are defined. The reduction technique has been successfully applied to detailed autoignition mechanisms of two reference hydrocarbons: n-heptane and iso-octane. The efficiency of the technique and the ability of the reduced mechanisms to reproduce well the results generated by the full mechanism are discussed. A speedup of calculations by a factor of 5.9 for n-heptane mechanism and by a factor of 16.7 for iso-octane mechanism is obtained without losing accuracy of the prediction of autoignition delay times and concentrations of intermediate species.
Date: November 29, 2006
Creator: Saylam, A; Ribaucour, M; Pitz, W J & Minetti, R
System: The UNT Digital Library
Pyomelanin Is Produced by Shewanella Algae BrY and Effected by Exogenous Iron (open access)

Pyomelanin Is Produced by Shewanella Algae BrY and Effected by Exogenous Iron

Melanin production by S. algae BrY occurred during late/post-exponential growth in lactate-basal-salts liquid medium supplemented with tyrosine or phenylalanine. The antioxidant ascorbate inhibited melanin production, but not production of the melanin precursor, homogentisic acid. In the absence of ascorbate, melanin production was inhibited by the 4-hydroxyplenylpyruvate dioxygenase inhibitor, sulcotrione and Fe(II) (>0.2mM). These data support the hypothesis that pigment production by S. algae BrY was a result the conversion of tyrosine or phenylalanine to homogentisic acid which was excreted, auto-oxidized and self-polymerized to form pyomelanin. The inverse relationship between Fe(II) concentration and pyomelanin production has implications that pyomelanin may play a role in iron assimilation under Fe(II) limiting conditions.
Date: November 29, 2006
Creator: Turick, Charles E.; Caccavo, Frank, Jr. & Tisa, Louis S.
System: The UNT Digital Library