Resource Type

Language

Large Eddy Simulation of Turbulent Flow and Dispersion in Urban Areas and Forest Canopies (open access)

Large Eddy Simulation of Turbulent Flow and Dispersion in Urban Areas and Forest Canopies

Under the sponsorship of the U.S. DOE and DHS, we have developed a CFD model for simulating flow and dispersion of chemical and biological agents released in the urban environment. Our model, FEM3MP (Chan and Stevens, 2000), is based on solving the three-dimensional, time-dependent, incompressible Navier-Stokes equations on massively parallel computer platforms. The model uses the finite element method for accurate representation of complex building shapes and variable terrain, together with a semi-implicit projection method and modern iterative solvers for efficient time integration (Gresho and Chan, 1998). Physical processes treated include turbulence modeling via the RANS (Reynolds Averaged Navier-Stokes) and LES (Large Eddy Simulation) approaches, atmospheric stability, aerosols, UV radiation decay, surface energy budget, and vegetative canopies, etc. Predictions from our model are continuously being verified and validated against data from wind tunnel (Chan and Stevens, 2000; Chan, et al., 2001) and field experiments (Chan, et al., 2002, 2003; Lee, et al., 2002; Humphreys, et al., 2003; and Calhoun, et al., 2004). Discussed below are several examples to illustrate the use of FEM3MP in simulating flow and dispersion in urban areas and forest canopies, with model results compared against available field measurements.
Date: April 9, 2004
Creator: Chan, Stevens T.
System: The UNT Digital Library
A tool for the quantitative spatial analysis of mammary gland epithelium (open access)

A tool for the quantitative spatial analysis of mammary gland epithelium

In this paper we present a method for the spatial analysis of complex cellular systems based on a multiscale study of neighborhood relationships. A function to measure those relationships, M, is introduced. The refined Relative Neighborhood Graph is then presented as a method to establish vicinity relationships within layered cellular structures, and particularized to epithelial cell nuclei in the mammary gland. Finally, the method is illustrated with two examples that show interactions within one population of epithelial cells and between two different populations.
Date: April 9, 2004
Creator: Ortiz de Solorzano, Carlos & Fernandez-Gonzalez, Rodrigo
System: The UNT Digital Library
The QCD/SM working group: Summary report (open access)

The QCD/SM working group: Summary report

Among the many physics processes at TeV hadron colliders, we look most eagerly for those that display signs of the Higgs boson or of new physics. We do so however amid an abundance of processes that proceed via Standard Model (SM) and in particular Quantum Chromodynamics (QCD) interactions, and that are interesting in their own right. Good knowledge of these processes is required to help us distinguish the new from the known. Their theoretical and experimental study teaches us at the same time more about QCD/SM dynamics, and thereby enables us to further improve such distinctions. This is important because it is becoming increasingly clear that the success of finding and exploring Higgs boson physics or other New Physics at the Tevatron and LHC will depend significantly on precise understanding of QCD/SM effects for many observables. To improve predictions and deepen the study of QCD/SM signals and backgrounds was therefore the ambition for our QCD/SM working group at this Les Houches workshop. Members of the working group made significant progress towards this on a number of fronts. A variety of tools were further developed, from methods to perform higher order perturbative calculations or various types of resummation, to improvements in …
Date: April 9, 2004
Creator: Dobbs, Matt; Frixione, S.; Laenen, E.; De Roeck, A.; Tollefson, K.; Andersen, J. et al.
System: The UNT Digital Library
Coherent synchrotron radiation and bunch stability in a compactstorage ring (open access)

Coherent synchrotron radiation and bunch stability in a compactstorage ring

We examine the effect of the collective force due to coherent synchrotron radiation (CSR) in an electron storage ring with small bending radius. In a computation based on time-domain integration of the nonlinear Vlasov equation, we find the threshold current for a longitudinal microwave instability induced by CSR alone. The model accounts for suppression of radiation at long wave lengths due to shielding by the vacuum chamber. In a calculation just above threshold, small ripples in the charge distribution build up over a fraction of a synchrotron period, but then die out to yield a relatively smooth but altered distribution with eventual oscillations in bunch length. The instability evolves from small noise on an initial smooth bunch of r.m.s.length much greater than the shielding cutoff. The paper includes a derivation and extensive analysis of the complete impedance function Z for synchrotron radiation with parallel plate shielding. We find corrections to the lowest approximation to the coherent force which involve ''off-diagonal'' values of Z, that is, fields with phase velocity not equal to the particle velocity.
Date: April 9, 2004
Creator: Venturini, Marco; Warnock, Robert; Ruth, Ronald & Ellison, James A.
System: The UNT Digital Library
Progress on the Development of a Single Line of Sight X-ray Framing Camera (open access)

Progress on the Development of a Single Line of Sight X-ray Framing Camera

High-speed micro-strip micro-channel plate (MCP) x-ray framing cameras are a well established diagnostic for laser plasma experiments. Each frame acquired with these devices requires a separate image, and with most reasonable x-ray optics, a separate line of sight, causing potential parallax problems. Gated image tubes have a single line of sight capability, but the conventional designs have not been effectively extended to the short gating times of the micro-strip-line MCP camera. A hybrid camera combining image tube and micro-strip-line MCP technology has been under development at LLNL in collaboration with UR/LLE, and KENTECH Instruments. The key feature of this single line of sight (SLOS) hybrid image tube is a deflection assembly that continuously divides the electrons from a single photocathode x-ray image into a set of four electron images. Temporal gating of these images is carried out using a microstripline microchannel plate framing camera module positioned at the image plane of the electron tube. Characterization measurements performed using both X-rays from a Manson source and from laser generated plasmas, will be presented. Some implementation improvements will be discussed. The results will be compared to simulations carried out using the charged particle optics code SIMION. Various dissector designs were simulated in …
Date: April 9, 2004
Creator: Bradley, D. K.; Holder, J. P.; Damian, C. M.; Piston, K. W.; Bell, P. M.; Dymoke-Bradshaw, A. K. L. et al.
System: The UNT Digital Library
Nanosecond Gating of Microstripline Microchannel Plate Framing Cameras: Characterization and Simulation (open access)

Nanosecond Gating of Microstripline Microchannel Plate Framing Cameras: Characterization and Simulation

The soft x-ray microstripline microchannel plate (MCP) framing camera has become one of the workhorses of ICF diagnostics. Much progress has been made in making these diagnostics work well with gate times of 100 ps and below. Often weak input signal or source timing uncertainties dictate a requirement for longer gate times, preferably in the same instrument that also has fast gating capability. The large power-law dependence of MCP gain on applied voltage is useful in shortening the gating time of the microstripline camera. However, this sensitivity leads to tight constraints on the shape of the long duration electrical pulses that are needed to drive the MCP to produce experimentally desirable optical gating profiles. Simple modeling and measurements are used to better understand the character of the voltage pulses needed to achieve optical gate widths between 500 ps and {approx}2 ns.
Date: April 9, 2004
Creator: Holder, J. P.; Hargrove, D. R.; Sibernagel, C. T.; Perry, T. S.; Bradley, D. K. & Bell, P. M.
System: The UNT Digital Library
Efficient Multi-keV X-Ray Sources from Ti-Doped Aerogel Targets (open access)

Efficient Multi-keV X-Ray Sources from Ti-Doped Aerogel Targets

We have measured the production of hv {approx} 4.7 keV x-rays from low-density Ti-doped aerogel ({rho} {approx} 3 mg/cc) targets at the OMEGA laser facility (University of Rochester), with the goal of maximizing x-ray output. Forty OMEGA beams ({lambda}{sub L} = 0.351 {micro}m) illuminated the two cylindrical faces of the target with a total power that ranged from 7 to 14 TW. The laser fully ionizes the target (n{sub e}/n{sub crit} {le} 0.1), and a laser-bleaching wave excites, supersonically, the high-Z emitter ions in the sample. Heating in the target was imaged with gated x-ray framing cameras and an x-ray streak camera. Ti K-shell x-ray emission was spectrally resolved with a two-channel crystal spectrometer and also with a set of filtered aluminum x-ray diodes, both instruments provide absolute measurement of the multi-keV x-ray emission. We find between 40 - 260 J of output with 4.67 {le} hv {le} 5.0 keV. Radiation-hydrodynamic calculations predict late time enhancement of the x-ray power due first to axial stagnation of the heating waves, then, ablatively-driven radial compression from the target walls.
Date: April 9, 2004
Creator: Fournier, K.; Constantin, C.; Gregori, G.; Miller, M.; Back, C.; Suter, L. et al.
System: The UNT Digital Library
Calibration of NIF neutron detectors in the energy region E<14 MeV (open access)

Calibration of NIF neutron detectors in the energy region E<14 MeV

We examine various options for calibration of NIF neutron detectors in the energy region E&lt;14 MeV. These options include: downscatter of D-T fusion neutrons using plastic targets; nuclear reactions at a Tandem Van de Graaf accelerator; and ''white'' neutrons from a pulsed spallation source. As an example of the spallation option, we present some calibration data that was recently obtained with a single crystal CVD diamond detector at the Weapons Neutron Research facility (WNR) at LANL.
Date: April 9, 2004
Creator: Schmid, G. J.; Moran, M. J.; Koch, J. A.; Phillips, T. W.; Glebov, V. Y.; Sangster, T. C. et al.
System: The UNT Digital Library
Downscattered Neutron Imaging (open access)

Downscattered Neutron Imaging

None
Date: April 9, 2004
Creator: Moran, M; Haan, S; Hatchett, S; Koch, J; Barrera, C & Morse, E
System: The UNT Digital Library
Re-examining the Dissolution of Spent Fuel: A Comparison of Different Methods for Calculating Rates (open access)

Re-examining the Dissolution of Spent Fuel: A Comparison of Different Methods for Calculating Rates

Dissolution rates for spent fuel have typically been reported in terms of a rate normalized to the surface area of the specimen. Recent evidence has shown that neither the geometric surface area nor that measured with BET accurately predicts the effective surface area of spent fuel. Dissolution rates calculated from results obtained by flowthrough tests were reexamined comparing the cumulative releases and surface area normalized rates. While initial surface area is important for comparison of different rates, it appears that normalizing to the surface area introduces unnecessary uncertainty compared to using cumulative or fractional release rates. Discrepancies in past data analyses are mitigated using this alternative method.
Date: April 9, 2004
Creator: Hanson, B D & Stout, R B
System: The UNT Digital Library
Chemisorption On Nanoparticles: An Alternative Mechanism For Hydrogen Storage (open access)

Chemisorption On Nanoparticles: An Alternative Mechanism For Hydrogen Storage

We present first principles, computational predictions of a porous, nano-structured semiconductor material that will reversibly store hydrogen for fuel cell applications. The material is competitive with current metal hydride storage materials, but contains only carbon and silicon, reducing both its cost and environmental impact. Additionally, unlike metal hydrides, the core skeleton structure of this material is unaltered when cycling from full hydrogen storage to full hydrogen depletion, removing engineering complications associated with expansion/contraction of the material.
Date: April 9, 2004
Creator: Williamson, A; Reboredo, F & Galli, G
System: The UNT Digital Library
Corrosion Behavior of Medium Carbon Steel in Simulated Concentrated Yucca Mountain Waters (open access)

Corrosion Behavior of Medium Carbon Steel in Simulated Concentrated Yucca Mountain Waters

Medium carbon steel (MCS) is the candidate material for rock bolts to reinforce the borehole liners and emplacement drifts of the proposed Yucca Mountain (YM) high-level nuclear waste repository. Corrosion performance of this structural steel -AISI 1040- was investigated by techniques such as linear polarization, electrochemical impedance spectroscopy (EIS), and laboratory immersion tests in lab simulated concentrated YM ground waters. Corrosion rates of the steel were determined for the temperatures in the range from 25 C to 85 C, for the ionic concentrations of 1 time (1x), 10 times (10x), and hundred times (100x) ground waters. The MCS corroded uniformly at the penetration rates of 35-200 {micro}m/year in the de-aerated YM waters, and 200-1000 {micro}m/year in the aerated waters. Increasing temperatures in the de-aerated waters increased the corrosion rates of the steel. However, increasing ionic concentrations influenced the corrosion rates only slightly. In the aerated 1x and 10x waters, increasing temperatures increased the rates of MCS significantly. Inhibitive precipitates, which formed in the aerated 100x waters at higher temperatures (65 C and up) decreased the corrosion rates to the values that obtained for the de-aerated YM aqueous environments. The steel suffered pitting corrosion in the both de-aerated and aerated hot …
Date: April 9, 2004
Creator: Yilmaz, A; Chandra, D & Rebak, R B
System: The UNT Digital Library
Adaptive Algebraic Multigrid Methods (open access)

Adaptive Algebraic Multigrid Methods

Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Date: April 9, 2004
Creator: Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S & Ruge, J
System: The UNT Digital Library