Elicitation of Protein-Protein Interactions from Biomedical Literature Using Association Rule Discovery (open access)

Elicitation of Protein-Protein Interactions from Biomedical Literature Using Association Rule Discovery

Extracting information from a stack of data is a tedious task and the scenario is no different in proteomics. Volumes of research papers are published about study of various proteins in several species, their interactions with other proteins and identification of protein(s) as possible biomarker in causing diseases. It is a challenging task for biologists to keep track of these developments manually by reading through the literatures. Several tools have been developed by computer linguists to assist identification, extraction and hypotheses generation of proteins and protein-protein interactions from biomedical publications and protein databases. However, they are confronted with the challenges of term variation, term ambiguity, access only to abstracts and inconsistencies in time-consuming manual curation of protein and protein-protein interaction repositories. This work attempts to attenuate the challenges by extracting protein-protein interactions in humans and elicit possible interactions using associative rule mining on full text, abstracts and captions from figures available from publicly available biomedical literature databases. Two such databases are used in our study: Directory of Open Access Journals (DOAJ) and PubMed Central (PMC). A corpus is built using articles based on search terms. A dataset of more than 38,000 protein-protein interactions from the Human Protein Reference Database (HPRD) …
Date: August 2010
Creator: Samuel, Jarvie John
System: The UNT Digital Library
New Computational Methods for Literature-Based Discovery (open access)

New Computational Methods for Literature-Based Discovery

In this work, we leverage the recent developments in computer science to address several of the challenges in current literature-based discovery (LBD) solutions. First, LBD solutions cannot use semantics or are too computational complex. To solve the problems we propose a generative model OverlapLDA based on topic modeling, which has been shown both effective and efficient in extracting semantics from a corpus. We also introduce an inference method of OverlapLDA. We conduct extensive experiments to show the effectiveness and efficiency of OverlapLDA in LBD. Second, we expand LBD to a more complex and realistic setting. The settings are that there can be more than one concept connecting the input concepts, and the connectivity pattern between concepts can also be more complex than a chain. Current LBD solutions can hardly complete the LBD task in the new setting. We simplify the hypotheses as concept sets and propose LBDSetNet based on graph neural networks to solve this problem. We also introduce different training schemes based on self-supervised learning to train LBDSetNet without relying on comprehensive labeled hypotheses that are extremely costly to get. Our comprehensive experiments show that LBDSetNet outperforms strong baselines on simple hypotheses and addresses complex hypotheses.
Date: May 2022
Creator: Ding, Juncheng
System: The UNT Digital Library
Mediation on XQuery Views (open access)

Mediation on XQuery Views

The major goal of information integration is to provide efficient and easy-to-use access to multiple heterogeneous data sources with a single query. At the same time, one of the current trends is to use standard technologies for implementing solutions to complex software problems. In this dissertation, I used XML and XQuery as the standard technologies and have developed an extended projection algorithm to provide a solution to the information integration problem. In order to demonstrate my solution, I implemented a prototype mediation system called Omphalos based on XML related technologies. The dissertation describes the architecture of the system, its metadata, and the process it uses to answer queries. The system uses XQuery expressions (termed metaqueries) to capture complex mappings between global schemas and data source schemas. The system then applies these metaqueries in order to rewrite a user query on a virtual global database (representing the integrated view of the heterogeneous data sources) to a query (termed an outsourced query) on the real data sources. An extended XML document projection algorithm was developed to increase the efficiency of selecting the relevant subset of data from an individual data source to answer the user query. The system applies the projection algorithm …
Date: December 2006
Creator: Peng, Xiaobo
System: The UNT Digital Library

Mining Biomedical Data for Hidden Relationship Discovery

Access: Use of this item is restricted to the UNT Community
With an ever-growing number of publications in the biomedical domain, it becomes likely that important implicit connections between individual concepts of biomedical knowledge are overlooked. Literature based discovery (LBD) is in practice for many years to identify plausible associations between previously unrelated concepts. In this paper, we present a new, completely automatic and interactive system that creates a graph-based knowledge base to capture multifaceted complex associations among biomedical concepts. For a given pair of input concepts, our system auto-generates a list of ranked subgraphs uncovering possible previously unnoticed associations based on context information. To rank these subgraphs, we implement a novel ranking method using the context information obtained by performing random walks on the graph. In addition, we enhance the system by training a Neural Network Classifier to output the likelihood of the two concepts being likely related, which provides better insights to the end user.
Date: August 2019
Creator: Dharmavaram, Sirisha
System: The UNT Digital Library
Application-Specific Things Architectures for IoT-Based Smart Healthcare Solutions (open access)

Application-Specific Things Architectures for IoT-Based Smart Healthcare Solutions

Human body is a complex system organized at different levels such as cells, tissues and organs, which contributes to 11 important organ systems. The functional efficiency of this complex system is evaluated as health. Traditional healthcare is unable to accommodate everyone's need due to the ever-increasing population and medical costs. With advancements in technology and medical research, traditional healthcare applications are shaping into smart healthcare solutions. Smart healthcare helps in continuously monitoring our body parameters, which helps in keeping people health-aware. It provides the ability for remote assistance, which helps in utilizing the available resources to maximum potential. The backbone of smart healthcare solutions is Internet of Things (IoT) which increases the computing capacity of the real-world components by using cloud-based solutions. The basic elements of these IoT based smart healthcare solutions are called "things." Things are simple sensors or actuators, which have the capacity to wirelessly connect with each other and to the internet. The research for this dissertation aims in developing architectures for these things, focusing on IoT-based smart healthcare solutions. The core for this dissertation is to contribute to the research in smart healthcare by identifying applications which can be monitored remotely. For this, application-specific thing architectures …
Date: May 2018
Creator: Sundaravadivel, Prabha
System: The UNT Digital Library
The Value of Everything: Ranking and Association with Encyclopedic Knowledge (open access)

The Value of Everything: Ranking and Association with Encyclopedic Knowledge

This dissertation describes WikiRank, an unsupervised method of assigning relative values to elements of a broad coverage encyclopedic information source in order to identify those entries that may be relevant to a given piece of text. The valuation given to an entry is based not on textual similarity but instead on the links that associate entries, and an estimation of the expected frequency of visitation that would be given to each entry based on those associations in context. This estimation of relative frequency of visitation is embodied in modifications to the random walk interpretation of the PageRank algorithm. WikiRank is an effective algorithm to support natural language processing applications. It is shown to exceed the performance of previous machine learning algorithms for the task of automatic topic identification, providing results comparable to that of human annotators. Second, WikiRank is found useful for the task of recognizing text-based paraphrases on a semantic level, by comparing the distribution of attention generated by two pieces of text using the encyclopedic resource as a common reference. Finally, WikiRank is shown to have the ability to use its base of encyclopedic knowledge to recognize terms from different ontologies as describing the same thing, and thus …
Date: December 2009
Creator: Coursey, Kino High
System: The UNT Digital Library
Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in  the Disease Prevalence in Homogenous and Heterogeneous Human Populations (open access)

Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in the Disease Prevalence in Homogenous and Heterogeneous Human Populations

The history of mitigation programs to contain vector-borne diseases is a story of successes and failures. Due to the complex interplay among multiple factors that determine disease dynamics, the general principles for timely and specific intervention for incidence reduction or eradication of life-threatening diseases has yet to be determined. This research discusses computational methods developed to assist in the understanding of complex relationships affecting vector-borne disease dynamics. A computational framework to assist public health practitioners with exploring the dynamics of vector-borne diseases, such as malaria and dengue in homogenous and heterogeneous populations, has been conceived, designed, and implemented. The framework integrates a stochastic computational model of interactions to simulate horizontal disease transmission. The intent of the computational modeling has been the integration of stochasticity during simulation of the disease progression while reducing the number of necessary interactions to simulate a disease outbreak. While there are improvements in the computational time reducing the number of interactions needed for simulating disease dynamics, the realization of interactions can remain computationally expensive. Using multi-threading technology to improve performance upon the original computational model, multi-threading experimental results have been tested and reported. In addition, to the contact model, the modeling of biological processes specific to …
Date: August 2016
Creator: Bravo-Salgado, Angel D
System: The UNT Digital Library

Helping Students with Upper Limb Motor Impairments Program in a Block-Based Programming Environment Using Voice

Students with upper body motor impairments, such as cerebral palsy, multiple sclerosis, ALS, etc., face challenges when learning to program in block-based programming environments, because these environments are highly dependent on the physical manipulation of a mouse or keyboard to drag and drop elements on the screen. In my dissertation, I make the block-based programming environment Blockly, accessible to students with upper body motor impairment by adding speech as an alternative form of input. This voice-enabled version of Blockly will reduce the need for the use of a mouse or keyboard, making it more accessible to students with upper body motor impairments. The voice-enabled Blockly system consists of the original Blockly application, a speech recognition API, predefined voice commands, and a custom function. Three user studies have been conducted, a preliminary study, a usability study, and an A/B test. These studies revealed a lot of information, such as the need for simpler, shorter, and more intuitive commands, the need to change the target audience, the shortcomings of speech recognition systems, etc. The feedback received from each study influenced design decisions at different phases. The findings also gave me insight into the direction I would like to go in the future. …
Date: August 2022
Creator: Okafor, Obianuju Chinonye
System: The UNT Digital Library
Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis (open access)

Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis

This research is concerned with the identification of sentiment in multimodal content. This is of particular interest given the increasing presence of subjective multimodal content on the web and other sources, which contains a rich and vast source of people's opinions, feelings, and experiences. Despite the need for tools that can identify opinions in the presence of diverse modalities, most of current methods for sentiment analysis are designed for textual data only, and few attempts have been made to address this problem. The dissertation investigates techniques for augmenting linguistic representations with acoustic, visual, and physiological features. The potential benefits of using these modalities include linguistic disambiguation, visual grounding, and the integration of information about people's internal states. The main goal of this work is to build computational resources and tools that allow sentiment analysis to be applied to multimodal data. This thesis makes three important contributions. First, it shows that modalities such as audio, video, and physiological data can be successfully used to improve existing linguistic representations for sentiment analysis. We present a method that integrates linguistic features with features extracted from these modalities. Features are derived from verbal statements, audiovisual recordings, thermal recordings, and physiological sensors signals. The resulting …
Date: December 2014
Creator: Pérez-Rosas, Verónica
System: The UNT Digital Library

Evaluating Stack Overflow Usability Posts in Conjunction with Usability Heuristics

This thesis explores the critical role of usability in software development and uses usability heuristics as a cost-effective and efficient method for evaluating various software functions and interfaces. With the proliferation of software development in the modern digital age, developing user-friendly interfaces that meet the needs and preferences of users has become a complex process. Usability heuristics, a set of guidelines based on principles of human-computer interaction, provide a starting point for designers to create intuitive, efficient, and easy-to-use interfaces that provide a seamless user experience. The study uses Jakob Nieson's ten usability heuristics to evaluate the usability of Stack Overflow posts, a popular Q\&A website for developers. Through the analysis of 894 posts related to usability, the study identifies common usability problems faced by users and developers, providing valuable insights into the effectiveness of usability guidelines in software development practice. The research findings emphasize the need for ongoing evaluation and improvement of software interfaces to ensure a seamless user experience. The thesis concludes by highlighting the potential of usability heuristics in guiding the design of user-friendly software interfaces and improving the overall user experience in software development.
Date: May 2023
Creator: Jalali, Hamed
System: The UNT Digital Library
Computational Approaches for Analyzing Social Support in Online Health Communities (open access)

Computational Approaches for Analyzing Social Support in Online Health Communities

Online health communities (OHCs) have become a medium for patients to share their personal experiences and interact with peers on topics related to a disease, medication, side effects, and therapeutic processes. Many studies show that using OHCs regularly decreases mortality and improves patients mental health. As a result of their benefits, OHCs are a popular place for patients to refer to, especially patients with a severe disease, and to receive emotional and informational support. The main reasons for developing OHCs are to present valid and high-quality information and to understand the mechanism of social support in changing patients' mental health. Given the purpose of OHC moderators for developing OHCs applications and the purpose of patients for using OHCs, there is no facility, feature, or sub-application in OHCs to satisfy patient and moderator goals. OHCs are only equipped with a primary search engine that is a keyword-based search tool. In other words, if a patient wants to obtain information about a side-effect, he/she needs to browse many threads in the hope that he/she can find several related comments. In the same way, OHC moderators cannot browse all information which is exchanged among patients to validate their accuracy. Thus, it is critical …
Date: May 2018
Creator: Khan Pour, Hamed
System: The UNT Digital Library
Ontology Based Security Threat Assessment and Mitigation for Cloud Systems (open access)

Ontology Based Security Threat Assessment and Mitigation for Cloud Systems

A malicious actor often relies on security vulnerabilities of IT systems to launch a cyber attack. Most cloud services are supported by an orchestration of large and complex systems which are prone to vulnerabilities, making threat assessment very challenging. In this research, I developed formal and practical ontology-based techniques that enable automated evaluation of a cloud system's security threats. I use an architecture for threat assessment of cloud systems that leverages a dynamically generated ontology knowledge base. I created an ontology model and represented the components of a cloud system. These ontologies are designed for a set of domains that covers some cloud's aspects and information technology products' cyber threat data. The inputs to our architecture are the configurations of cloud assets and components specification (which encompass the desired assessment procedures) and the outputs are actionable threat assessment results. The focus of this work is on ways of enumerating, assessing, and mitigating emerging cyber security threats. A research toolkit system has been developed to evaluate our architecture. We expect our techniques to be leveraged by any cloud provider or consumer in closing the gap of identifying and remediating known or impending security threats facing their cloud's assets.
Date: December 2018
Creator: Kamongi, Patrick
System: The UNT Digital Library
Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures (open access)

Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures

In recent years, brain computer interfaces (BCIs) have gained popularity in non-medical domains such as the gaming, entertainment, personal health, and marketing industries. A growing number of companies offer various inexpensive consumer grade BCIs and some of these companies have recently introduced the concept of BCI "App stores" in order to facilitate the expansion of BCI applications and provide software development kits (SDKs) for other developers to create new applications for their devices. The BCI applications access to users' unique brainwave signals, which consequently allows them to make inferences about users' thoughts and mental processes. Since there are no specific standards that govern the development of BCI applications, its users are at the risk of privacy breaches. In this work, we perform first comprehensive analysis of BCI App stores including software development kits (SDKs), application programming interfaces (APIs), and BCI applications w.r.t privacy issues. The goal is to understand the way brainwave signals are handled by BCI applications and what threats to the privacy of users exist. Our findings show that most applications have unrestricted access to users' brainwave signals and can easily extract private information about their users without them even noticing. We discuss potential privacy threats posed by …
Date: May 2017
Creator: Bhalotiya, Anuj Arun
System: The UNT Digital Library

A Performance and Security Analysis of Elliptic Curve Cryptography Based Real-Time Media Encryption

Access: Use of this item is restricted to the UNT Community
This dissertation emphasizes the security aspects of real-time media. The problems of existing real-time media protections are identified in this research, and viable solutions are proposed. First, the security of real-time media depends on the Secure Real-time Transport Protocol (SRTP) mechanism. We identified drawbacks of the existing SRTP Systems, which use symmetric key encryption schemes, which can be exploited by attackers. Elliptic Curve Cryptography (ECC), an asymmetric key cryptography scheme, is proposed to resolve these problems. Second, the ECC encryption scheme is based on elliptic curves. This dissertation explores the weaknesses of a widely used elliptic curve in terms of security and describes a more secure elliptic curve suitable for real-time media protection. Eighteen elliptic curves had been tested in a real-time video transmission system, and fifteen elliptic curves had been tested in a real-time audio transmission system. Based on the performance, X9.62 standard 256-bit prime curve, NIST-recommended 256-bit prime curves, and Brainpool 256-bit prime curves were found to be suitable for real-time audio encryption. Again, X9.62 standard 256-bit prime and 272-bit binary curves, and NIST-recommended 256-bit prime curves were found to be suitable for real-time video encryption.The weaknesses of NIST-recommended elliptic curves are discussed and a more secure new …
Date: December 2019
Creator: Sen, Nilanjan
System: The UNT Digital Library
Evaluation Techniques and Graph-Based Algorithms for Automatic Summarization and Keyphrase Extraction (open access)

Evaluation Techniques and Graph-Based Algorithms for Automatic Summarization and Keyphrase Extraction

Automatic text summarization and keyphrase extraction are two interesting areas of research which extend along natural language processing and information retrieval. They have recently become very popular because of their wide applicability. Devising generic techniques for these tasks is challenging due to several issues. Yet we have a good number of intelligent systems performing the tasks. As different systems are designed with different perspectives, evaluating their performances with a generic strategy is crucial. It has also become immensely important to evaluate the performances with minimal human effort. In our work, we focus on designing a relativized scale for evaluating different algorithms. This is our major contribution which challenges the traditional approach of working with an absolute scale. We consider the impact of some of the environment variables (length of the document, references, and system-generated outputs) on the performance. Instead of defining some rigid lengths, we show how to adjust to their variations. We prove a mathematically sound baseline that should work for all kinds of documents. We emphasize automatically determining the syntactic well-formedness of the structures (sentences). We also propose defining an equivalence class for each unit (e.g. word) instead of the exact string matching strategy. We show an evaluation …
Date: August 2016
Creator: Hamid, Fahmida
System: The UNT Digital Library
Intelligent Memory Manager: Towards improving the locality behavior of allocation-intensive applications. (open access)

Intelligent Memory Manager: Towards improving the locality behavior of allocation-intensive applications.

Dynamic memory management required by allocation-intensive (i.e., Object Oriented and linked data structured) applications has led to a large number of research trends. Memory performance due to the cache misses in these applications continues to lag in terms of execution cycles as ever increasing CPU-Memory speed gap continues to grow. Sophisticated prefetcing techniques, data relocations, and multithreaded architectures have tried to address memory latency. These techniques are not completely successful since they require either extra hardware/software in the system or special properties in the applications. Software needed for prefetching and data relocation strategies, aimed to improve cache performance, pollutes the cache so that the technique itself becomes counter-productive. On the other hand, extra hardware complexity needed in multithreaded architectures decelerates CPU's clock, since "Simpler is Faster." This dissertation, directed to seek the cause of poor locality behavior of allocation--intensive applications, studies allocators and their impact on the cache performance of these applications. Our study concludes that service functions, in general, and memory management functions, in particular, entangle with application's code and become the major cause of cache pollution. In this dissertation, we present a novel technique that transfers the allocation and de-allocation functions entirely to a separate processor residing in …
Date: May 2004
Creator: Rezaei, Mehran
System: The UNT Digital Library
Improving Memory Performance for Both High Performance Computing and Embedded/Edge Computing Systems (open access)

Improving Memory Performance for Both High Performance Computing and Embedded/Edge Computing Systems

CPU-memory bottleneck is a widely recognized problem. It is known that majority of high performance computing (HPC) database systems are configured with large memories and dedicated to process specific workloads like weather prediction, molecular dynamic simulations etc. My research on optimal address mapping improves the memory performance by increasing the channel and bank level parallelism. In an another research direction, I proposed and evaluated adaptive page migration techniques that obviates the need for offline analysis of an application to determine page migration strategies. Furthermore, I explored different migration strategies like reverse migration, sub page migration that I found to be beneficial depending on the application behavior. Ideally, page migration strategies redirect the demand memory traffic to faster memory to improve the memory performance. In my third contribution, I worked and evaluated a memory-side accelerator to assist the main computational core in locating the non-zero elements of a sparse matrix that are typically used in scientific, machine learning workloads on a low-power embedded system configuration. Thus my contributions narrow the speed-gap by improving the latency and/or bandwidth between CPU and memory.
Date: December 2021
Creator: Adavally, Shashank
System: The UNT Digital Library

Deep Learning Methods to Investigate Online Hate Speech and Counterhate Replies to Mitigate Hateful Content

Hateful content and offensive language are commonplace on social media platforms. Many surveys prove that high percentages of social media users experience online harassment. Previous efforts have been made to detect and remove online hate content automatically. However, removing users' content restricts free speech. A complementary strategy to address hateful content that does not interfere with free speech is to counter the hate with new content to divert the discourse away from the hate. In this dissertation, we complement the lack of previous work on counterhate arguments by analyzing and detecting them. Firstly, we study the relationships between hateful tweets and replies. Specifically, we analyze their fine-grained relationships by indicating whether the reply counters the hate, provides a justification, attacks the author of the tweet, or adds additional hate. The most obvious finding is that most replies generally agree with the hateful tweets; only 20% of them counter the hate. Secondly, we focus on the hate directed toward individuals and detect authentic counterhate arguments from online articles. We propose a methodology that assures the authenticity of the argument and its specificity to the individual of interest. We show that finding arguments in online articles is an efficient alternative compared to …
Date: May 2023
Creator: Albanyan, Abdullah Abdulaziz
System: The UNT Digital Library
Split array and scalar data cache: A comprehensive study of data cache organization. (open access)

Split array and scalar data cache: A comprehensive study of data cache organization.

Existing cache organization suffers from the inability to distinguish different types of localities, and non-selectively cache all data rather than making any attempt to take special advantage of the locality type. This causes unnecessary movement of data among the levels of the memory hierarchy and increases in miss ratio. In this dissertation I propose a split data cache architecture that will group memory accesses as scalar or array references according to their inherent locality and will subsequently map each group to a dedicated cache partition. In this system, because scalar and array references will no longer negatively affect each other, cache-interference is diminished, delivering better performance. Further improvement is achieved by the introduction of victim cache, prefetching, data flattening and reconfigurability to tune the array and scalar caches for specific application. The most significant contribution of my work is the introduction of novel cache architecture for embedded microprocessor platforms. My proposed cache architecture uses reconfigurability coupled with split data caches to reduce area and power consumed by cache memories while retaining performance gains. My results show excellent reductions in both memory size and memory access times, translating into reduced power consumption. Since there was a huge reduction in miss rates …
Date: August 2007
Creator: Naz, Afrin
System: The UNT Digital Library
Hybrid Optimization Models for Depot Location-Allocation and Real-Time Routing of Emergency Deliveries (open access)

Hybrid Optimization Models for Depot Location-Allocation and Real-Time Routing of Emergency Deliveries

Prompt and efficient intervention is vital in reducing casualty figures during epidemic outbreaks, disasters, sudden civil strife or terrorism attacks. This can only be achieved if there is a fit-for-purpose and location-specific emergency response plan in place, incorporating geographical, time and vehicular capacity constraints. In this research, a comprehensive emergency response model for situations of uncertainties (in locations' demand and available resources), typically obtainable in low-resource countries, is designed. It involves the development of algorithms for optimizing pre-and post-disaster activities. The studies result in the development of four models: (1) an adaptation of a machine learning clustering algorithm, for pre-positioning depots and emergency operation centers, which optimizes the placement of these depots, such that the largest geographical location is covered, and the maximum number of individuals reached, with minimal facility cost; (2) an optimization algorithm for routing relief distribution, using heterogenous fleets of vehicle, with considerations for uncertainties in humanitarian supplies; (3) a genetic algorithm-based route improvement model; and (4) a model for integrating possible new locations into the routing network, in real-time, using emergency severity ranking, with a high priority on the most-vulnerable population. The clustering approach to solving dept location-allocation problem produces a better time complexity, and the …
Date: May 2021
Creator: Akwafuo, Sampson E
System: The UNT Digital Library

Revealing the Positive Meaning of a Negation

Access: Use of this item is restricted to the UNT Community
Negation is a complex phenomenon present in all human languages, allowing for the uniquely human capacities of denial, contradiction, misrepresentation, lying, and irony. It is in the first place a phenomenon of semantical opposition. Sentences containing negation are generally (a) less informative than affirmative ones, (b) morphosyntactically more marked—all languages have negative markers while only a few have affirmative markers, and (c) psychologically more complex and harder to process. Negation often conveys positive meaning. This meaning ranges from implicatures to entailments. In this dissertation, I develop a system to reveal the underlying positive interpretation of negation. I first identify which words are intended to be negated (i.e, the focus of negation) and second, I rewrite those tokens to generate an actual positive interpretation. I identify the focus of negation by scoring probable foci along a continuous scale. One of the obstacles to exploring foci scoring is that no public datasets exist for this task. Thus, to study this problem I create new corpora. The corpora contain verbal, nominal and adjectival negations and their potential positive interpretations along with their scores ranging from 1 to 5. Then, I use supervised learning models for scoring the focus of negation. In order to …
Date: May 2019
Creator: Sarabi, Zahra
System: The UNT Digital Library

Toward Leveraging Artificial Intelligence to Support the Identification of Accessibility Challenges

The goal of this thesis is to support the automated identification of accessibility in user reviews or bug reports, to help technology professionals prioritize their handling, and, thus, to create more inclusive apps. Particularly, we propose a model that takes as input accessibility user reviews or bug reports and learns their keyword-based features to make a classification decision, for a given review, on whether it is about accessibility or not. Our empirically driven study follows a mixture of qualitative and quantitative methods. We introduced models that can accurately identify accessibility reviews and bug reports and automate detecting them. Our models can automatically classify app reviews and bug reports as accessibility-related or not so developers can easily detect accessibility issues with their products and improve them to more accessible and inclusive apps utilizing the users' input. Our goal is to create a sustainable change by including a model in the developer's software maintenance pipeline and raising awareness of existing errors that hinder the accessibility of mobile apps, which is a pressing need. In light of our findings from the Blackboard case study, Blackboard and the course material are not easily accessible to deaf students and hard of hearing. Thus, deaf students …
Date: May 2023
Creator: Aljedaani, Wajdi Mohammed R M., Sr.
System: The UNT Digital Library
Improving Software Quality through Syntax and Semantics Verification of Requirements Models (open access)

Improving Software Quality through Syntax and Semantics Verification of Requirements Models

Software defects can frequently be traced to poorly-specified requirements. Many software teams manage their requirements using tools such as checklists and databases, which lack a formal semantic mapping to system behavior. Such a mapping can be especially helpful for safety-critical systems. Another limitation of many requirements analysis methods is that much of the analysis must still be done manually. We propose techniques that automate portions of the requirements analysis process, as well as clarify the syntax and semantics of requirements models using a variety of methods, including machine learning tools and our own tool, VeriCCM. The machine learning tools used help us identify potential model elements and verify their correctness. VeriCCM, a formalized extension of the causal component model (CCM), uses formal methods to ensure that requirements are well-formed, as well as providing the beginnings of a full formal semantics. We also explore the use of statecharts to identify potential abnormal behaviors from a given set of requirements. At each stage, we perform empirical studies to evaluate the effectiveness of our proposed approaches.
Date: December 2018
Creator: Gaither, Danielle
System: The UNT Digital Library
FPGA Implementations of Elliptic Curve Cryptography and Tate Pairing over Binary Field (open access)

FPGA Implementations of Elliptic Curve Cryptography and Tate Pairing over Binary Field

Elliptic curve cryptography (ECC) is an alternative to traditional techniques for public key cryptography. It offers smaller key size without sacrificing security level. Tate pairing is a bilinear map used in identity based cryptography schemes. In a typical elliptic curve cryptosystem, elliptic curve point multiplication is the most computationally expensive component. Similarly, Tate pairing is also quite computationally expensive. Therefore, it is more attractive to implement the ECC and Tate pairing using hardware than using software. The bases of both ECC and Tate pairing are Galois field arithmetic units. In this thesis, I propose the FPGA implementations of the elliptic curve point multiplication in GF (2283) as well as Tate pairing computation on supersingular elliptic curve in GF (2283). I have designed and synthesized the elliptic curve point multiplication and Tate pairing module using Xilinx's FPGA, as well as synthesized all the Galois arithmetic units used in the designs. Experimental results demonstrate that the FPGA implementation can speedup the elliptic curve point multiplication by 31.6 times compared to software based implementation. The results also demonstrate that the FPGA implementation can speedup the Tate pairing computation by 152 times compared to software based implementation.
Date: August 2007
Creator: Huang, Jian
System: The UNT Digital Library