Degree Discipline

Application of Cultured Neuronal Networks for Use as Biological Sensors in Water Toxicology and Lipid Signaling.

Access: Use of this item is restricted to the UNT Community
This dissertation research explored the capabilities of neuronal networks grown on substrate integrated microelectrode arrays in vitro to be applied to toxicological research and lipid signaling. Chapter 1 details the effects of chlorine on neuronal network spontaneous electrical activity and pharmacological sensitivity. This study demonstrates that neuronal networks can maintain baseline spontaneous activity, and respond normally to pharmacological manipulations in the present of three times the chlorine present in drinking water. The findings suggest that neuronal networks may be used as biological sensors to monitor the quality of water and the presence of novel toxicants that cannot be detected by conventional sensors. Chapter 2 details the neuromodulatory effects of N-acylethanolamides (NAEs) on the spontaneous electrical activity of neuronal networks. NAEs are a group of lipids that can mimic the effects of marijuana and can be derived from a variety of plant sources including soy lecithin. The most prominent NAEs in soy lecithin, palmitoylethanolamide (PEA) and linoleoylethanolamide (LEA), were tested individually and were found to significantly inhibit neuronal spiking and bursting activity. These effects were potentiated by a mixture of NAEs as found in a HPLC enriched fraction from soy lecithin. Cannabinoid receptor-1 (CB1-R) antagonists and other cannabinoid pathway modulators indicated …
Date: August 2004
Creator: Dian, Emese Emöke
System: The UNT Digital Library
Effects of Methanol, Atrazine, and Copper on the Ultrastructure of Pseudokirchneriella Subcapitata (Selenastrum Capricornutum). (open access)

Effects of Methanol, Atrazine, and Copper on the Ultrastructure of Pseudokirchneriella Subcapitata (Selenastrum Capricornutum).

The toxicity of methanol, atrazine, and copper to Pseudokirchneriella subcapitata (Korshikov) Hindák historically referred to as Selenastrum capricornutum Printz were determined following 96 hrs growth in a modified Goram's growth media. Methanol and atrazine inhibited fluorescence readings in the cultures by 50% (IC50) at concentrations of 2% and 82 µg/l respectively. These toxicity values compared favorably to other published reports. The IC50 for copper was 160 µg/l which is substantially higher than reported values. This is understandable because of the high chelating capacity of Goram's media. The use of stereologically derived relative volume in the chloroplasts, mitochondria, lipid bodies, phosphate bodies, and nucleus was investigated to determine if it could be used as a sensitive endpoint in toxicity tests. The volume fractions for the chloroplasts and mitochondria were normally distributed in control cells while the nuclei, phosphate bodies, and lipid bodies were not. The chloroplasts were the most dominate organelle occupying a mean relative volume of 46% and mitochondria occupied a mean relative volume of 3%. The nucleus and phosphate bodies occupied a median relative volume of 7% and 2% respectively. The lipid bodies were rare in section profile and no meaningful median relative volume could be calculated. Up to …
Date: May 2004
Creator: Garrett, David C.
System: The UNT Digital Library