Evaluating the Feasibility of Accelerometers in Hand Gestures Recognition (open access)

Evaluating the Feasibility of Accelerometers in Hand Gestures Recognition

Gesture recognition plays an important role in human computer Interaction for intelligent computing. Major applications like Gaming, Robotics and Automated Homes uses gesture recognition techniques which diminishes the usage of mechanical devices. The main goal of my thesis is to interpret SWAT team gestures using different types of sensors. Accelerometer and flex sensors were explored extensively to build a prototype for soldiers to communicate in the absence of line of sight. Arm movements were recognized by flex sensors and motion gestures by Accelerometers. Accelerometers are used to measure acceleration in respect to movement of the sensor in 3D. Flex sensors changes its resistance based on the amount of bend in the sensor. SVM is the classification algorithm used for classification of the samples. LIBSVM (Library for Support Vector Machines) is integrated software for support vector classification, regression and distribution estimation which supports multi class classification. Sensors data is connected to the WI micro dig to digitize the signal and to transmit it wirelessly to the computing device. Feature extraction and Signal windowing were the two major factors which contribute for the accuracy of the system. Mean Average value and Standard Deviation are the two features considered for accelerometer sensor data …
Date: December 2014
Creator: Karlaputi, Sarada
System: The UNT Digital Library
A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications (open access)

A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications

This thesis presents a novel ZnO-hydrogel based fluorescent colloidal semiconductor nanomaterial system for potential bio-medical applications such as bio-imaging, cancer detection and therapy. The preparation of ZnO nanoparticles and their surface modification to make a biocompatible material with enhanced optical properties is discussed. High quality ZnO nanoparticles with UV band edge emission are prepared using gas evaporation method. Semiconductor materials including ZnO are insoluble in water. Since biological applications require water soluble nanomaterials, ZnO nanoparticles are first dispersed in water by ball milling method, and their aqueous stability and fluorescence properties are enhanced by incorporating them in bio-compatible poly N-isopropylacrylamide (PNIPAM) based hydrogel polymer matrix. The optical properties of ZnO-hydrogel colloidal dispersion versus ZnO-Water dispersion were analyzed. The optical characterization using photoluminescence spectroscopy indicates approximately 10 times enhancement of fluorescence in ZnO-hydrogel colloidal system compared to ZnO-water system. Ultrafast time resolved measurement demonstrates dominant exciton recombination process in ZnO-hydrogel system compared to ZnO-water system, confirming the surface modification of ZnO nanoparticles by hydrogel polymer matrix. The surface modification of ZnO nanoparticles by hydrogel induce more scattering centers per unit area of cross-section, and hence increase the luminescence from the ZnO-gel samples due to multiple path excitations. Furthermore, surface modification of …
Date: May 2009
Creator: John, Sween
System: The UNT Digital Library
Evaluation of Fine Particulate Matter Pollution Sources Affecting Dallas, Texas (open access)

Evaluation of Fine Particulate Matter Pollution Sources Affecting Dallas, Texas

Dallas is the third largest growing industrialized city in the state of Texas. the prevailing air quality here is highly influenced by the industrialization and particulate matter 2.5µm (PM2.5) has been found to be one of the main pollutants in this region. Exposure to PM2.5 in elevated levels could cause respiratory problems and other health issues, some of which could be fatal. the current study dealt with the quantification and analysis of the sources of emission of PM2.5 and an emission inventory for PM2.5 was assessed. 24-hour average samples of PM2.5 were collected at two monitoring sites under the Texas Commission on Environmental Quality (TCEQ) in Dallas, Dallas convention Centre (CAMS 312) and Dallas Hinton sites (CAMS 60). the data was collected from January 2003 to December 2009 and by using two positive matrix models PMF 2 and EPA PMF the PM2.5 source were identified. 9 sources were identified from CAMS 312 of which secondary sulfate (31% by PMF2 and 26% by EPA PMF) was found to be one of the major sources. Data from CAMS 60 enabled the identification of 8 sources by PMF2 and 9 by EPA PMF. These data also confirmed secondary sulfate (35% by PMF2 and …
Date: May 2012
Creator: Puthenparampil Koruth, Joseph
System: The UNT Digital Library