States

Estimation of Air Emissions During Production Phase from Active Oil and Gas Wells in the Barnett Shale Basin: 2010-2013 (open access)

Estimation of Air Emissions During Production Phase from Active Oil and Gas Wells in the Barnett Shale Basin: 2010-2013

The Barnett shale basin, the largest onshore gas field in the state of Texas, mainly produces natural gas. The basin’s oil and gas productions have dramatically increased over the past two decades with the enhancement via shale fracturing (fracking) technology. However, recent studies suggest that air emissions from shale fracking have significantly contributed to the growing air pollution problem in North Texas. In this study, air emissions from the Barnett shale basin during the production phase of the oil and gas activities (once the product is collected from the wells) are quantified. Oil and gas production data were acquired from the Texas Railroad Commission for the baseline years of 2010 through 2013. Methodology from prior studies on shale basins approved by the Texas Commission on Environmental Quality was employed in this study and the emission inventories from the production phase sources were quantified. Accordingly, the counties with the most gas operations in the basin, Tarrant, Johnson, Denton and Wise, were found to be the highest emitters of air pollutants. Tarrant County was responsible for the highest emitted NOx (42,566 tons) and CO (17,698 tons) in the basin, while Montague County released the maximum VOC emissions (87,601 tons) during the study …
Date: May 2015
Creator: Dohde, Farhan A.
System: The UNT Digital Library
Quasi-Three Dimensional Experiments on Liquid-Solid Fluidized Bed of Three Different Particles in Two Different Distributors (open access)

Quasi-Three Dimensional Experiments on Liquid-Solid Fluidized Bed of Three Different Particles in Two Different Distributors

This thesis is an experimental study of the fluidization of binary mixture in particulate flows. A fluidized bed with two distributors was built with water being used as carrying fluid. Three types of solid particles of nylon, glass and aluminum of the same size and different densities are used in the experiments. The wall effect on a single particle fluidization, the fluidization of binary mixture of large density difference (nylon and aluminum of density ratio of 0.42), and the fluidization of binary mixture of close density (glass and aluminum with density ratio of 0.91) were investigated. Also, the effect of distributors on mono-disperse and bi-disperse particle fluidization was investigated. Results show that the presence of narrow walls reduces the minimum fluidization velocity for a single particle by as much as nearly 40%. Also, in the case of binary mixture of close density particles, uniform mixing was easily achieved and no segregation was observed, but in the case of large density difference particles, there exists significant segregation and separation. At high velocity, the uniform distributor behaves like a transport bed. To achieve a full bed in the single jet, it requires 1.5 times velocity of the uniform distributor. This behavior determines …
Date: December 2009
Creator: Obuseh, Chukwuyem Charles
System: The UNT Digital Library
An Evaluation of Long-Term Air Quality Trends in North Texas using Statistical and Machine Learning Techniques (open access)

An Evaluation of Long-Term Air Quality Trends in North Texas using Statistical and Machine Learning Techniques

While ozone design values have decreased since 2000, the values measured in Denton Airport South (DEN), an exurban region in the northwest tip of the Dallas-Fort Worth (DFW) metroplex, remains above those measured in Dallas Hinton (DAL) and Fort Worth Northwest (FWNW), two extremely urbanized regions; in addition, all three sites remained in nonattainment of National Ambient Air Quality Standards (NAAQS) ozone despite reductions in measured NOx and CO concentrations. The region's inability to achieve ozone attainment is tied to its concentration of total non-methane organic compounds (TNMOC). The mean concentration of TNMOC measured at DAL, FWNW, and DEN between 2000 and 2018 were 67.4 ± 1.51 ppb-C, 89.31 ± 2.12 ppb-C, and 220.69 ± 10.36 ppb-C, respectively. Despite being the least urbanized site of the three, the TNMOC concentration measured at DEN was over twice as large as those measured at the other two sites. A factor-based source apportionment analysis using positive matrix factorization technique showed that natural gas was a major contributing source factor to the measured TNMOC concentrations at all three sites and the dominant source factor at DEN. Natural gas accounted for 32%, 40%, and 69% of the measured TNMOC concentration at DAL, FWNW, and DEN, …
Date: May 2020
Creator: Lim, Guo Quan
System: The UNT Digital Library