Federal Geothermal Research Program Update, FY 2000 (open access)

Federal Geothermal Research Program Update, FY 2000

The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in …
Date: August 1, 2001
Creator: Renner, Joel Lawrence
System: The UNT Digital Library
Environmental Systems Research Candidates Program--FY2000 Annual report (open access)

Environmental Systems Research Candidates Program--FY2000 Annual report

The Environmental Systems Research Candidates (ESRC) Program, which is scheduled to end September 2001, was established in April 2000 as part of the Environmental Systems Research and Analysis Program at the Idaho National Engineering and Environmental Laboratory (INEEL) to provide key science and technology to meet the clean-up mission of the U.S. Department of Energy Office of Environmental Management, and perform research and development that will help solve current legacy problems and enhance the INEEL’s scientific and technical capability for solving longer-term challenges. This report documents the progress and accomplishments of the ESRC Program from April through September 2000. The ESRC Program consists of 24 tasks subdivided within four research areas: A. Environmental Characterization Science and Technology. This research explores new data acquisition, processing, and interpretation methods that support cleanup and long-term stewardship decisions. B. Subsurface Understanding. This research expands understanding of the biology, chemistry, physics, hydrology, and geology needed to improve models of contamination problems in the earth’s subsurface. C. Environmental Computational Modeling. This research develops INEEL computing capability for modeling subsurface contaminants and contaminated facilities. D. Environmental Systems Science and Technology. This research explores novel processes to treat waste and decontaminate facilities. Our accomplishments during FY 2000 include …
Date: January 1, 2001
Creator: Piet, Steven James
System: The UNT Digital Library
Environmental Systems Research and Analysis FY 2000 Annual Report (open access)

Environmental Systems Research and Analysis FY 2000 Annual Report

The Environmental Systems Research (ESR) Program, a part of the Environmental Systems Research and Analysis (ESRA) Program, was implemented to enhance and augment the technical capabilities of the INEEL. Strengthening the Technical capabilities of the INEEL will provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). This is a progress report for the third year of the ESR Program (FY 2000). A report of activities is presented for the five ESR research investment areas: (1) Transport Aspects of Selective Mass Transport Agents, (2) Chemistry of Environmental Surfaces, (3) Materials Dynamics, (4) Characterization Science, and (5) Computational Simulation of Mechanical and Chemical Systems. In addition to the five technical areas, the report describes activities in the Science and Technology Foundations element of the program, e.g., interfaces between ESR and the EM Science Program (EMSP) and the EM Focus Areas. The five research areas are subdivided into 18 research projects. FY 2000 research in these 18 projects has resulted in more than 50 technical papers that are in print, in press, in review, or in preparation. Additionally, more than 100 presentations were made at professional society meetings nationally and internationally. Work supported …
Date: January 1, 2001
Creator: Miller, David L.; Castle, Peter Myer & Piet, Steven J.
System: The UNT Digital Library
Hanford Site Groundwater Monitoring for Fiscal Year 2000 (open access)

Hanford Site Groundwater Monitoring for Fiscal Year 2000

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support …
Date: March 1, 2001
Creator: Hartman, Mary J.; Morasch, Launa F. & Webber, William D.
System: The UNT Digital Library
Pacific Northwest National Laboratory Institutional Plan FY 2000-2004 (open access)

Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.
Date: March 1, 2000
Creator: Pearson, Erik W.
System: The UNT Digital Library
Institutional Plan, FY 1995--2000 (open access)

Institutional Plan, FY 1995--2000

Sandia recently completed an updated strategic plan, the essence of which is presented in chapter 4. Sandia`s Strategic Plan 1994 takes its direction from DOE`s Fueling a Competitive Economy: Strategic Plan and provides tangible guidance for Sandia`s programs and operations. Although it is impossible to foresee precisely what activities Sandia will pursue many years from now, the strategic plan makes one point clear: the application of our scientific and engineering skills to the stewardship of the nation`s nuclear deterrent will be central to our service to the nation. We will provide the necessary institutional memory and continuity, experience base, and technical expertise to ensure the continued safety, security, and reliability of the nuclear weapons stockpile. As a multiprogram laboratory, Sandia will also continue to focus maximum effort on a broad spectrum of other topics consistent with DOE`s enduring core mission responsibilities: Defense (related to nuclear weapons), Energy, Environment (related to waste management and environmental remediation), and Basic Science.
Date: October 1, 1994
Creator: unknown
System: The UNT Digital Library
TFA Tank Focus Area - multiyear program plan FY98-FY00 (open access)

TFA Tank Focus Area - multiyear program plan FY98-FY00

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), …
Date: September 1, 1997
Creator: unknown
System: The UNT Digital Library