An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2 (open access)

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC …
Date: December 31, 2010
Creator: Miller, Bruce & Winton, Shea
System: The UNT Digital Library
An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3 (open access)

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC …
Date: December 31, 2010
Creator: Miller, Bruce & Shea, Winton
System: The UNT Digital Library
Balloon Fabrics Made of Goldbeater's Skins (open access)

Balloon Fabrics Made of Goldbeater's Skins

Goldbeater's skin, which is the prepared outside membrane of the large intestine of an ox, is examined as a balloon fabric and details of how goldbeater's skin is prepared for use are provided. The construction techniques employed by Germany, France, and England are all discussed.
Date: December 1922
Creator: Chollet, L.
System: The UNT Digital Library
Increasing Lift by Releasing Compressed Air on Suction Side of Airfoil (open access)

Increasing Lift by Releasing Compressed Air on Suction Side of Airfoil

The investigation was limited chiefly to the region of high angles of attack since it is only in this region that any considerable change in the character of the flow can be expected from such artificial aids. The slot, through which compressed air was blown, was formed by two pieces of sheet steel connected by screws at intervals of about 5 cm. It was intended to regulate the width of the slot by means of these screws. Much more compressed air was required than was originally supposed, hence all the delivery pipes were much too small. This experiment, therefore, is to be regarded as only a preliminary one.
Date: December 1927
Creator: Seewald, F.
System: The UNT Digital Library
X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials (open access)

X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 [Angstrom]. The Fe-Fe distance was determined to be 3.4 [Angstrom]. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.
Date: December 1, 1992
Creator: DeWitt, J. G.
System: The UNT Digital Library