Final Report for DOE Project Number: DE-FG02-05ER46241 (open access)

Final Report for DOE Project Number: DE-FG02-05ER46241

Hydrogen storage is the most challenging task for the hydrogen economy. We established a multidisciplinary research program for high throughput combinatorial synthesis and characterization of novel nanoporous and metastable complex hydrides, coupled to fundamental material studies including electronic, structural and kinetic transport modeling, and pump-probe experiments. Our research is based the concept of hybrid nanostructures that store hydrogen by a combination of chemi- and physorption: atomic hydrogen is stored in metastable hydrides while molecule hydrogen is stored in the nanometer pores of the hydrides. Metastable nanostructured hydride has been achieved by introducing structural and compositional disorders through high throughput elemental substitution/doping, catalyst addition, and nonequilibrium processing. Fast screening compatible with the combinatorial synthesis was achieved by combining X-ray structural characterization with the development of a laser-based microbalance. Manufacturing of nanoporous metahydrides that are identified as promising by the combinatorial synthesis has been explored along with the materials search.
Date: March 15, 2010
Creator: Chen, Gang; Dresselhaus, Mildred S.; Grigoropoulos, Costas P.; Mao, Samuel S.; Xiang, Xiaodong & Zeng, Taofang
System: The UNT Digital Library