Molecular Dynamics Simulations of the Structures and Properties of Aluminosilicate and Borosilicate Glasses (open access)

Molecular Dynamics Simulations of the Structures and Properties of Aluminosilicate and Borosilicate Glasses

Silicate glasses are the most common glass types and have impact on almost every aspect in our lives: from window, containers, to glass fibers for telecommunications. Unlike their crystalline counterparts, glass materials lack long-range order in their atomic arrangement but their structures do possess short and medium range characteristics that play critical roles in their physical and chemical properties. Despite active development of characterization techniques that have contributed to the understanding of glass structures, there remain key challenges in obtaining essential structural features of glasses. Atomistic computer simulations have become an increasingly important method in elucidating the atomic structures and in interpretation and/or prediction of composition-structure-property relationships of complex materials. In this dissertation, classical molecular dynamic (MD) simulations were used to investigate the atomic structures, dynamic and other properties of two important glass systems—aluminosilicate glasses and borosilicate glasses, which are the basis of most industrial and technologically important glasses. Firstly, a comprehensive study of peralkaline Na2O-Al2O3-SiO2 glass with varying Al2O3/SiO2, Na2O/Al2O3, Na2O/SiO2 ratios has been performed to obtain better understanding of the composition–structure–property relationships in this glass system. More than 99% of Al were 4-coordinated in these glasses, validating that Na+ tend to charge balance [AlO4]- network forming units first …
Date: December 2018
Creator: Ren, Mengguo
System: The UNT Digital Library
Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate Glasses (open access)

Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate Glasses

First, the effect of transition metal oxide (e.g., V2O5, Co2O3, etc.) on the physical properties (e.g., density, glass transition temperature (Tg), optical properties and mechanical properties) and chemical durability of a simplified borosilicate nuclear waste glass was investigated. Adding V2O5 in borosilicate nuclear waste glasses decreases the Tg, while increasing the fracture toughness and chemical durability, which benefit the future formulation of nuclear waste glasses. Second, structural study of ZrO2/SiO2 substitution in silicate/borosilicate glasses was systematically conducted by molecular dynamics (MD) simulation and the quantitative structure-property relationships (QSPR) analysis to correlate structural features with measured properties. Third, for bioactive glass formulation, mixed-network former effect of B2O3 and SiO2 on the structure, as well as the physical properties and bioactivity were studied by both experiments and MD simulation. B2O3/SiO2 substitution of 45S5 and 55S5 bioactive glasses increases the glass network connectivity, correlating well with the reduction of bioactivity tested in vitro. Lastly, the effect of optical dopants on the optimum analytical performance on atom probe tomography (APT) analysis of borosilicate glasses was explored. It was found that optical doping could be an effective way to improve data quality for APT analysis with a green laser assisted system, while laser spot size …
Date: December 2018
Creator: Lu, Xiaonan
System: The UNT Digital Library