Piezoelectric-Based Gas Sensors for Harsh Environment Gas Component Monitoring (open access)

Piezoelectric-Based Gas Sensors for Harsh Environment Gas Component Monitoring

In this study, gas sensing systems that are based on piezoelectric smart material and structures are proposed, designed, developed, and tested, which are mainly aimed to address the temperature dependent CO2 gas sensing in a real environment. The state-of-the-art of gas sensing technologies are firstly reviewed and discussed for their pros and cons. The adsorption mechanisms including physisorption and chemisorption are subsequently investigated to characterize and provide solutions to various gas sensors. Particularly, a QCM based gas sensor and a C-axis inclined zigzag ZnO FBAR gas sensor are designed and analyzed for their performance on room temperature CO2 gas sensing, which fall into the scope of physisorption. In contrast, a Langasite (LGS) surface acoustic wave (SAW) based acetone vapor sensor is designed, developed, and tested, which is based on the chemisorption analysis of the LGS substrate. Moreover, solid state gas sensors are characterized and analyzed for chemisorption-based sensitive sensing thin film development, which can be further applied to piezoelectric-based gas sensors (i.e. Ca doped ZnO LGS SAW gas sensors) for performance enhanced CO2 gas sensing. Additionally, an innovative MEMS micro cantilever beam is proposed based on the LGS nanofabrication, which can be potentially applied for gas sensing, when combined with …
Date: August 2019
Creator: Zhang, Chen
System: The UNT Digital Library

Carbon Capture Utilization for Bio-Based Building Insulation Foams

Ecological, health and environmental concerns are driving the need for bio-resourced foams for the building industry and for other applications. This is because insulation is one of the most important aspects of the building envelope. Global building insulation is expected to reach USD 27.74 billion in 2022. Conventional insulation materials currently used in buildings are made from nonrenewable products (petroleum, fiber glass). However, they yield increasing unrecyclable eco-unfriendly waste at the end of their lives; styrene and polyurethane generates over 100,000 kg of waste insulation in US alone yearly. This is because they are non-biodegradable and can remain as microplastics in the environment for 1000 years. Polyurethane contains the same amount of energy as coal. Additionally, most of the processing techniques and blowing agents used in this manufacturing of these foams are cancerous and injurious to health when inhaled. Because buildings and their construction together account for 36% of global energy use and 39% of energy-related carbon dioxide emissions annually, there is a need to develop eco-friendly foams that will serve as possible substitutes to the currently used petroleum-based foams. This dissertation examined the development and characterization of eco-friendly foams that were developed using the melt mixing technique of bio-resourced …
Date: August 2021
Creator: Oluwabunmi, Kayode Emmanuel
System: The UNT Digital Library