Degree Level

Dynamic Adhesion and Self-cleaning Mechanisms of Gecko Setae and Spatulae (open access)

Dynamic Adhesion and Self-cleaning Mechanisms of Gecko Setae and Spatulae

Geckos can freely climb on walls and ceilings against their body weight at speed of over 1ms-1. Switching between attachment and detachment seem simple and easy for geckos, without considering the surface to be dry or wet, smooth or rough, dirty or clean. In addition, gecko can shed dirt particles during use, keeping the adhesive pads clean. Mimicking this biological system can lead to a new class of dry adhesives for various applications. However, gecko’s unique dry self-cleaning mechanism remains unknown, which impedes the development of self-cleaning dry adhesives. In this dissertation we provide new evidence and self-cleaning mechanism to explain how gecko shed particles and keep its sticky feet clean. First we studied the dynamic enhancement observed between micro-sized particles and substrate under dry and wet conditions. The adhesion force of soft (polystyrene) and hard (SiO2 and Al2O3) micro-particles on soft (polystyrene) and hard (fused silica and sapphire) substrates was measured using an atomic force microscope (AFM) with retraction (z-piezo) speed ranging over 4 orders of magnitude. The adhesion is strongly enhanced by the dynamic effect. When the retraction speeds varies from 0.02 µm/s to 156 µm/s, the adhesion force increases by 10% ~ 50% in dry nitrogen while …
Date: December 2013
Creator: Xu, Quan
System: The UNT Digital Library
Fabrication of the Novel Asymmetric Polymeric Materials via Bottom-Up Approach (open access)

Fabrication of the Novel Asymmetric Polymeric Materials via Bottom-Up Approach

Asymmetric polymeric materials can be formed by either top-down or bottom-up methods. Bottom-up methods involve assembling the atoms and molecules to form small nanostructures by carefully controlled synthesis, which results in a reduction of some of the top-down limitations. In this dissertation, thermal, tribological and antireflective properties of polymeric materials have been enhanced by introducing structural asymmetry. The overall performance of commercial polymeric coatings, e.g. epoxy and polyvinyl chloride, has been improved by conducting the blending methods, specifically, chemical modification (α,ω-dihydroxydimethyl(methyl-vinyl)oligoorganosiloxane), cross-linking (triallyl isocyanurate), and antioxidant (tris(nonylphenyl) phosphite) incorporation. The nonequilibrium polymeric structures (moth-eye and square array) have been developed for the ultrahigh molecular weight block copolymers via the short-term solvent vapor annealing self-assembly. The large domain size of the moth eye structure allows for improvement of the light transmittance particularly in the visible and near infrared ranges, while the square arrangement of the block copolymer opens the possibility of magnetic data storage application by the large magnetic nanoparticles' embedment or masking of the superconductors.
Date: May 2022
Creator: Hnatchuk, Nataliia
System: The UNT Digital Library
Thermo-Mechanical Processing and Advanced Charecterization of NiTi and NiTiHf Shape Memory Alloys (open access)

Thermo-Mechanical Processing and Advanced Charecterization of NiTi and NiTiHf Shape Memory Alloys

Shape memory alloys (SMAs) represent a revolutionary class of active materials that can spontaneously generate strain based on an environmental input, such as temperature or stress. SMAs can provide potential solutions to many of today's engineering problems due to their compact form, high energy densities, and multifunctional capabilities. While many applications in the biomedical, aerospace, automotive, and defense industries have already been investigated and realized for nickel-titanium (NiTi) based SMAs, the effects of controlling and designing the microstructure through processing (i.e. extreme cold working) have not been well understood. Current Ni-Ti based SMAs could be improved upon by increasing their work output, improving dimensional stability, preventing accidental actuation, and reducing strain localization. Additionally, there is a strong need to increase the transformation temperature above 115 °C, the current limit for NiTi and is especially important for aerospace applications. Previous research has shown that the addition on ternary elements such as Au, Hf, Pd, Pt, and Zr to NiTi can greatly increase these transformation temperatures. However, there are several limiting factors with these ternary additions such as increased cost, especially with Au, Pd, and Pt, as well as, difficulty in conventionally processing these alloys. Therefore, the main objectives of this research …
Date: May 2020
Creator: Ley, Nathan A
System: The UNT Digital Library
Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications (open access)

Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications

The utilization of biodegradable polymers is critical for developing “cradle to cradle” mindset with ecological, social and economic consequences. Poly(hydroxy butyrate-co-valerate) (PHBV) shows significant potential for many applications with a polypropylene equivalent mechanical performance. However, it has limitations including high crystallinity, brittleness, small processing window, etc. which need to be overcome before converting them into useful products. Further the development of biodegradable strain sensing polymer sensors for structural health monitoring has been a growing need. In this dissertation I utilize carbon nanotubes as a self sensing dispersed nanofiller. The impact of its addition on PHBV and a blend of PHBV with poly(butylene adipate-co-terephthalate) (PBAT) polymer was examined. Nanocomposites and blends of PHBV, PBAT, and MWCNTs were prepared by melt-blending. The effect of MWCNTs on PHBV crystallinity, crystalline phase, quasi-static and dynamic mechanical property was studied concurrently with piezoresistive response. In PHBV/PBAT blends a rare phenomenon of melting point elevation by the addition of low melting point PBAT was observed. The blends of these two semicrystalline aliphatic and aromatic polyesters were investigated by using differential scanning calorimetry, small angle X-ray scattering, dynamic mechanical analysis, surface energy measurement by contact angle method, polarized optical and scanning electron microscopy, and rheology. The study …
Date: December 2011
Creator: Vidhate, Shailesh
System: The UNT Digital Library