Evidence for the Absence of Gluon Orbital Angular Momentum in the Nucleon (open access)

Evidence for the Absence of Gluon Orbital Angular Momentum in the Nucleon

The Sivers mechanism for the single-spin asymmetry in unpolarized lepton scattering from a transversely polarized nucleon is driven by the orbital angular momentum carried by its quark and gluon constituents, combined with QCD final-state interactions. Both quark and gluon mechanisms can generate such a single-spin asymmetry, though only the quark mechanism can explain the small single-spin asymmetry measured by the COMPASS collaboration on the deuteron, suggesting the gluon mechanism is small relative to the quark mechanism. We detail empirical studies through which the gluon and quark orbital angular momentum contributions, quark-flavor by quark-flavor, can be elucidated.
Date: August 23, 2006
Creator: Brodsky, S. J. & Gardner, S.
System: The UNT Digital Library
Measurements and Modeling of Eddy Current Effects in BNL's AGS Booster. (open access)

Measurements and Modeling of Eddy Current Effects in BNL's AGS Booster.

Recent beam experiments at BNL's AGS Booster have enabled us to study in more detail the effects of eddy currents on the lattice structure and our control over the betatron tune. The Booster is capable of operating at ramp rates as high as 9 T/sec. At these ramp rates eddy currents in the vacuum chambers significantly alter the fields and gradients seen by the beam as it is accelerated. The Booster was designed with these effects in mind and to help control the field uniformity and linearity in the Booster Dipoles special vacuum chambers were designed with current windings to negate the affect of the induced eddy currents. In this report results from betatron tune measurements and eddy current simulations will be presented. We will then present results from modeling the accelerator using the results of the magnetic field simulations and compare these to the measurements.
Date: June 23, 2006
Creator: Brown, K. A.; Ahrens, L.; Gardner, C.; Glenn, J. W.; Harvey, M.; Meng, W. et al.
System: The UNT Digital Library
Setup and performance of RHIC for the 2008 run with deuteron-gold collisions. (open access)

Setup and performance of RHIC for the 2008 run with deuteron-gold collisions.

This year (2008) deuterons and gold ions were collided in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) for the first time since 2003. The setup and performance of the collider for the 2008 run is reviewed with a focus on improvements that have led to an order of magnitude increase in luminosity over that achieved in the 2003 run.
Date: June 23, 2008
Creator: Gardner,C.; Abreu, N.P.; Ahren, L.; Alessi, J.; Bai, M. & al., et
System: The UNT Digital Library
AGS polarized proton operation in run 8. (open access)

AGS polarized proton operation in run 8.

Dual partial snake scheme has been used for the Brookhaven AGS (Alternating Gradient Synchrotron) polarized proton operation for several years. It has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for RHIC spin program. There is still residual polarization loss. Several schemes such as putting horizontal tune into the spin tune gap, and injection-on-the-fly were tested in the AGS to mitigate the loss. This paper presents the experiment results and analysis.
Date: June 23, 2008
Creator: Huang, H.; Ahrens, L.; Bai, M.; Brown, K. A.; Gardner, C.; Glenn, J. W. et al.
System: The UNT Digital Library
Lattices for High-Power Proton Beam Acceleration and Secondary Beam Collection and Cooling. (open access)

Lattices for High-Power Proton Beam Acceleration and Secondary Beam Collection and Cooling.

Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.
Date: June 23, 2006
Creator: Wang, S.; Wei, J.; Brown, K.; Gardner, C.; Lee, Y. Y.; Lowenstein, D. et al.
System: The UNT Digital Library
Local indium segregation and band structure in high efficiencygreen light emitting InGaN/GaN diodes (open access)

Local indium segregation and band structure in high efficiencygreen light emitting InGaN/GaN diodes

GaN/InGaN light emitting diodes (LEDs) are commercialized for lighting applications because of the cost efficient way that they produce light of high brightness. Nevertheless, there is significant room for improving their external emission efficiency from typical values below 10 percent to more than 50 percent, which are obtainable by use of other materials systems that, however, do not cover the visible spectrum. In particular, green-light emitting diodes fall short in this respect, which is troublesome since the human eye is most sensitive in this spectral range. In this letter advanced electron microscopy is used to characterize indium segregation in InGaN quantum wells of high-brightness, green LEDs (with external quantum efficiency as high as 15 percent at 75 A/cm2). Our investigations reveal the presence of 1-3 nm wide indium rich clusters in these devices with indium concentrations as large as 0.30-0.40 that narrow the band gap locally to energies as small as 2.65 eV.
Date: November 23, 2004
Creator: Jinschek, Joerg R.; Erni, Rolf; Gardner, Nathan F.; Kim, AndrewY. & Kisielowski, Christian
System: The UNT Digital Library
Injection and Acceleration of Au31+ in the BNL AGS. (open access)

Injection and Acceleration of Au31+ in the BNL AGS.

Injection and acceleration of ions in a lower charge state reduces space charge effects, and, if further elcctron stripping is needed, may allow elimination of a stripping stage and the associated beam losses. The former is of interest to the accelerators in the GSI FAIR complex, the latter for BNL RHIC collider operation at energies lower than the current injection energy. Lower charge state ions, however, have a higher likelihood of electron stripping which can lead to dynamic pressures rises and subsequent beam losses. We report on experiments in the AGS where Au{sup 31+} ions were injected and accelerated instead of the normally used Au{sup 77+} ions. Beam intensities and the average pressure in the AGS ring are recorded, and compared with calculations for dynamic pressures and beam losses. The experimental results will be used to benchmark the StrahlSim dynamic vacuum code and will be incorporated in the GSI FAIR SIS100 design.
Date: June 23, 2008
Creator: Fischer, W.; Ahrens, L.; Brown, K.; Gardner, C.; Glenn, W.; Huang, H. et al.
System: The UNT Digital Library
New Class of CW High-Power Diode-Pumped Alkali Lasers (DPALs) (open access)

New Class of CW High-Power Diode-Pumped Alkali Lasers (DPALs)

The new class of diode-pumped alkali vapor lasers (DPALs) offers high efficiency cw laser radiation at near-infrared wavelengths: cesium 895 nm, rubidium 795 nm, and potassium 770 nm. The working physical principles of DPALs will be presented. Initial 795 nm Rb and 895 nm Cs laser experiments performed using a titanium sapphire laser as a surrogate pump source demonstrated DPAL slope power conversion efficiencies in the 50-70% range, in excellent agreement with device models utilizing only literature spectroscopic and kinetic data. Using these benchmarked models for Rb and Cs, optimized DPALs with optical-optical efficiencies >60%, and electrical efficiencies of 25-30% are projected. DPAL device architectures for near-diffraction-limited power scaling into the high kilowatt power regime from a single aperture will be described. DPAL wavelengths of operation offer ideal matches to silicon and gallium arsenide based photovoltaic power conversion cells for efficient power beaming.
Date: March 23, 2004
Creator: Krupke, W F; Beach, R J; Kanz, V K; Payne, S A & Early, J T
System: The UNT Digital Library
RHIC Performance During the FY10 200 GeV Au+Au Heavy Ion Run (open access)

RHIC Performance During the FY10 200 GeV Au+Au Heavy Ion Run

Since the last successful RHIC Au+Au run in 2007 (Run-7), the RHIC experiments have made numerous detector improvements and upgrades. In order to benefit from the enhanced detector capabilities and to increase the yield of rare events in the acquired heavy ion data a significant increase in luminosity is essential. In Run-7 RHIC achieved an average store luminosity of <L> = 12 x 10{sup 26} cm{sup -2} s{sup -1} by operating with 103 bunches (out of 111 possible), and by squeezing to {beta}* = 0.85 m. This year, Run-10, we achieved <L> = 20 x 10{sup 26} cm{sup -2} s{sup -1}, which put us an order of magnitude above the RHIC design luminosity. To reach these luminosity levels we decreased {beta}* to 0.75 m, operated with 111 bunches per ring, and reduced longitudinal and transverse emittances by means of bunched-beam stochastic cooling. In addition we introduced a lattice to suppress intra-beam scattering (IBS) in both RHIC rings, upgraded the RF control system, and separated transition crossing times in the two rings. We present an overview of the changes and the results of Run-10 performance.
Date: May 23, 2010
Creator: Brown, K. A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J. et al.
System: The UNT Digital Library
RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9 (open access)

RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9

During the second half of Run-9, the Relativisitc Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points. The spin orientation of both beams at these collision points was controlled by helical spin rotators, and physics data were taken with different orientations of the beam polarization. Recent developments and improvements will be presented, as well as luminosity and polarization performance achieved during Run-9.
Date: May 23, 2010
Creator: Montag, C.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J. M. et al.
System: The UNT Digital Library
Observation of off-Hugoniot shocked states with ultrafast time resolution (open access)

Observation of off-Hugoniot shocked states with ultrafast time resolution

We apply ultrafast single shot interferometry to determine the pressure and density of argon shocked from up to 7.8 GPa static initial pressure in a diamond anvil cell. This method enables the observation of thermodynamic states distinct from those observed in either single shock or isothermal compression experiments, and the observation of ultrafast dynamics in shocked materials. We also present a straightforward method for interpreting ultrafast shock wave data which determines the index of refraction at the shock front, and the particle and shock velocities for shock waves in transparent materials. Based on these methods, we observe shocked thermodynamic states between the room temperature isotherm of argon and the shock adiabat of cryogenic argon at final shock pressures up to 28 GPa.
Date: February 23, 2010
Creator: Armstrong, M; Crowhurst, J; Bastea, S & Zaug, J
System: The UNT Digital Library
Mechanisms of transition-metal gettering in silicon (open access)

Mechanisms of transition-metal gettering in silicon

The atomic process, kinetics, and equilibrium thermodynamics underlying the gettering of transition-metal impurities in Si are reviewed from a mechanistic perspective. Methods for mathematical modeling of gettering are reviewed and illustrated. Needs for further research are discussed.
Date: March 23, 2000
Creator: Myers, Samuel M., Jr.; Seibt, M. & Schroter, W.
System: The UNT Digital Library
Advanced numerical methods and software approaches for semiconductor device simulation (open access)

Advanced numerical methods and software approaches for semiconductor device simulation

In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches …
Date: March 23, 2000
Creator: CAREY,GRAHAM F.; PARDHANANI,A.L. & BOVA,STEVEN W.
System: The UNT Digital Library
Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging (open access)

Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging

The extracellular matrix (ECM), once thought to solely provide physical support to a tissue, is a key component of a cell's microenvironment responsible for directing cell fate and maintaining tissue specificity. It stands to reason, then, that changes in the ECM itself or in how signals from the ECM are presented to or interpreted by cells can disrupt tissue organization; the latter is a necessary step for malignant progression. In this review, we elaborate on this concept using the mammary gland as an example. We describe how the ECM directs mammary gland formation and function, and discuss how a cell's inability to interpret these signals - whether as a result of genetic insults or physicochemical alterations in the ECM - disorganizes the gland and promotes malignancy. By restoring context and forcing cells to properly interpret these native signals, aberrant behavior can be quelled and organization re-established. Traditional imaging approaches have been a key complement to the standard biochemical, molecular, and cell biology approaches used in these studies. Utilizing imaging modalities with enhanced spatial resolution in live tissues may uncover additional means by which the ECM regulates tissue structure, on different length scales, through its pericellular organization (short-scale) and by biasing …
Date: October 23, 2008
Creator: Ghajar, Cyrus M & Bissell, Mina J
System: The UNT Digital Library
Ultra-shallow box-like profiles fabricated by pulsed UV-laser doping process (open access)

Ultra-shallow box-like profiles fabricated by pulsed UV-laser doping process

Ultra-shallow, box-like impurity profiles are produced using Gas Immersion Laser Doping (GILD) and then analyzed by spreading resistance profilometry (SRP) and secondary ion mass spectrometry (SIMS) to determine the impurity distribution. At high concentrations, the profiles obtained by SRP exhibit the expected box-like shape over the entire range of junction depths: The measured concentration within the junction region is uniform while the dopant gradient at the junction exceeds 0.5 decades/nm. In comparison, the same profiles analyzed by SIMS show a broader transition at the metallurgical junction. Caused by knock-ons and ion mixing during the sputtering process, this inaccuracy is reduced, but not eliminated by lowering the acceleration energy of the primary Cs{sup +} ion beam. At lower concentrations (< 10{sup 19}/cm{sup 3}), profiles analyzed by SRP exhibit shallower junctions than expected. Electrical measurements of diodes and Hall structures show that high-quality, ultra-shallow n{sup +}p, np and pn are fabricated with good dose control using GILD. For complete characterization of GILD, accurate measurement of both chemical and electrically-active dopant profiles are required. At present, neither SIMS nor SRP provides an entirely accurate impurity profile.
Date: March 23, 1993
Creator: Ishida, E.; Sigmon, T. W. & Weiner, K. H.
System: The UNT Digital Library
Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices (open access)

Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices

Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.
Date: December 23, 2008
Creator: Xu, Ren; Boudreau, Aaron & Bissell, Mina J
System: The UNT Digital Library
Analysis of intensity instability threshold at transition in RHIC. (open access)

Analysis of intensity instability threshold at transition in RHIC.

The beam intensity of ion beams in RHIC is limited by a fast transverse instability at transition, driven by the machine impedance and electron clouds. For gold and deuteron beams we analyze the dependence of the instability threshold on beam and machine parameters from recent operational data and dedicated experiments. We fit the machine impedance to the experimental data.
Date: June 23, 2008
Creator: Fischer, W.; Blaskiewicz, M.; Cameron, P.; Montag, C. & Ptitsyn, V.
System: The UNT Digital Library
A step towards a computing grid for the LHC experiments: ATLAS Data Challenge 1 (open access)

A step towards a computing grid for the LHC experiments: ATLAS Data Challenge 1

The ATLAS Collaboration at CERN is preparing for the data taking and analysis at the LHC that will start in 2007. Therefore, a series of Data Challenges was started in 2002 whose goals are the validation of the Computing Model, of the complete software suite, of the data model, and to ensure the correctness of the technical choices to be made. A major feature of the first Data Challenge was the preparation and the deployment of the software required for the production of large event samples as a worldwide-distributed activity. It should be noted that it was not an option to ''run everything at CERN'' even if we had wanted to; the resources were not available at CERN to carry out the production on a reasonable time-scale. The great challenge of organizing and then carrying out this large-scale production at a significant number of sites around the world had the refore to be faced. However, the benefits of this are manifold: apart from realizing the required computing resources, this exercise created worldwide momentum for ATLAS computing as a whole. This report describes in detail the main steps carried out in DC1 and what has been learned from them as a …
Date: April 23, 2004
Creator: Sturrock, R.; Bischof, R.; Epp, B.; Ghete, V. M.; Kuhn, D.; Mello, A. G. et al.
System: The UNT Digital Library
RHIC polarized proton performance in run-8. (open access)

RHIC polarized proton performance in run-8.

During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Helical spin rotators at these two interaction regions were used to control the spin orientation of both beams at the collision points. Physics data were taken with different orientations of the beam polarization. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8.
Date: June 23, 2008
Creator: Montag, C.; Abreu, N.; Ahrens, L.; Bai, M.; Barton, D. & al., et
System: The UNT Digital Library
Dalitz Plot Analysis of B+- --> pi+-pi+-pi-+ Decays (open access)

Dalitz Plot Analysis of B+- --> pi+-pi+-pi-+ Decays

The authors present a Dalitz-plot analysis of charmless B{sup {+-}} decays to the final state {pi}{sup {+-}}{pi}{sup {+-}}{pi}{sup {-+}} using a sample of (465 {+-} 5) x 10{sup 6} B{bar B} pairs collected by the BABAR experiment at {radical}s = 10.58 GeV. They measure the branching fractions {Beta}(B{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup {+-}}{pi}{sup {-+}}) = (15.2 {+-} 0.6 {+-} 1.2 {+-} 0.4) x 10{sup -6}, {Beta}(B{sup {+-}} {yields} {rho}{sup 0}(770){pi}{sup {+-}}) = (8.1 {+-} 0.7 {+-} 1.2{sub -1.1}{sup +0.4}) x 10{sup -6}, {Beta}(B{sup {+-}} {yields} f{sub 2}(1270){pi}{sup {+-}}) = (1.57 {+-} 0.42 {+-} 0.16{sub -0.19}{sup +0.53}) x 10{sup -6}, and {Beta}(B{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup {+-}}{pi}{sup {-+}} nonresonant) = (5.3 {+-} 0.7 {+-} 0.6{sub -0.5}{sup +1.1}) x 10{sup -6}, where the uncertainties are statistical, systematic, and model-dependent, respectively. Measurements of branching fractions for the modes B{sup {+-}} {yields} {rho}{sup 0}(1450){pi}{sup {+-}} and B{sup {+-}} {yields} f{sub 0}(1370){pi}{sup {+-}} are also presented. They observe no significant direct CP asymmetries for the above modes, and there is no evidence for the decays B{sup {+-}} {yields} f{sub 0}(980){pi}{sup {+-}}, B{sup {+-}} {yields} {chi}{sub c0}{pi}{sup {+-}}, or B{sup {+-}} {yields} {chi}{sub c2}{pi}{sup {+-}}.
Date: February 23, 2009
Creator: Collaboration, The BABAR & Aubert, B.
System: The UNT Digital Library
RHIC and its upgrade programmes. (open access)

RHIC and its upgrade programmes.

As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species. After a brief review of the achieved performance the presentation will give an overview of the plans, challenges and status of machine upgrades, that range from a new heavy ion pre-injector and beam cooling at 100 GeV to a high luminosity electron-ion collider.
Date: June 23, 2008
Creator: Roser, T.
System: The UNT Digital Library
Plasma surface interactions in Q-enhanced mirror systems (open access)

Plasma surface interactions in Q-enhanced mirror systems

Two approaches to enhancement of the Q (energy gain) factor of mirror systems are under study at Livermore. These include the Tandem Mirror and the Field Reversed Mirror. Both of these new ideas preserve features of conventional mirror systems as far as plasma-wall interactions are concerned. Specifically in both approaches field lines exit from the ends of the system and impinge on walls located at a distance from the confinement chamber. It is possible to predict some aspects of the plasma/surface interactions of TM and FRM systems from experience obtained in the Livermore 2XIIB experiment. In particular, as observed in 2XIIB, effective isolation of the plasma from thermal contact with the ends owing to the development of sheath-like regions is to be expected. Studies presently underway directed toward still further enhancing the decoupling of the plasma from the effects of plasma surface interactions at the walls will be discussed, with particular reference to the problem of minimizing the effects of refluxing secondary electrons produced by plasma impact on the end walls.
Date: March 23, 1978
Creator: Post, R. F.
System: The UNT Digital Library
Automatic Extraction of Grasses and Individual Trees in Urban Areas Based on Airborne Hyperspectral and LiDAR Data (open access)

Automatic Extraction of Grasses and Individual Trees in Urban Areas Based on Airborne Hyperspectral and LiDAR Data

This article proposes a three-dimensional (3D) vegetation extraction workflow to extract urban grasses and trees at individual tree level in urban areas using airborne LiDAR and hyperspectral data. Results suggest that two- and three-dimensional urban vegetation extraction could play a significant role in spatial layout optimization and scientific management of urban vegetation.
Date: August 23, 2020
Creator: Man, Qixia; Dong, Pinliang; Yang, Xinming; Wu, Quanyuan & Han, Rongqing
System: The UNT Digital Library
Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring (open access)

Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Date: September 23, 2008
Creator: Wetovsky, Marv A; Aguilar-chang, Julio; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael et al.
System: The UNT Digital Library