Functional Design Criteria for Fy 1993-2000 Groundwater Monitoring Wells (open access)

Functional Design Criteria for Fy 1993-2000 Groundwater Monitoring Wells

The purpose of this revision is to update the Line Item Project, 93-L-GFW-152 Functional Design Criteria (FDC) to reflect changes approved in change control M-24-91-6, Engineering Change Notices (ECNs), and expand the scope to include subsurface investigations along with the borehole drilling. This revision improves the ability and effectiveness of maintaining RCRA and Operational groundwater compliance by combining borehole and well drilling with subsurface data gathering objectives. The total projected number of wells to be installed under this project has decreased from 200 and the scope has been broadened to include additional subsurface investigation activities that usually occur simultaneously with most traditional borehole drilling and monitoring well installations. This includes borehole hydrogeologic characterization activities, and vadose monitoring. These activities are required under RCRA 40 CFR 264 and 265 and WAC 173-303 for site characterization, groundwater and vadose assessment and well placement.
Date: January 1, 1996
Creator: Williams, B. A.
System: The UNT Digital Library
Environmental Systems Research, FY-99 Annual Report (open access)

Environmental Systems Research, FY-99 Annual Report

The Environmental Systems Research (ESR) Program, a part of the Environmental Systems Research and Analysis (ESRA) Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). The original portfolio of research activities was assembled after an analysis of the EM technology development and science needs as gathered by the Site Technology Coordination Groups (STCGs) complex-wide. Current EM investments in science and technology throughout the research community were also included in this analysis to avoid duplication of efforts. This is a progress report for the second year of the ESR Program (Fiscal Year 99). A report of activities is presented for the five ESR research investment areas: (a) Transport Aspects of Selective Mass Transport Agents, (b) Chemistry of Environmental Surfaces, (c) Materials Dynamics, (d) Characterization Science, and (e) Computational Simulation of Mechanical and Chemical Systems. In addition to the five technical areas, activities in the Science and Technology Foundations element of the program, e.g., interfaces between ESR and the …
Date: January 1, 2000
Creator: Miller, David Lynn
System: The UNT Digital Library
Environmental Systems Research FY-99 Annual Report (open access)

Environmental Systems Research FY-99 Annual Report

The Environmental Systems Research (ESR) Program, a part of the Environmental Systems Research and Analysis (ESRA) Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). The original portfolio of research activities was assembled after an analysis of the EM technology development and science needs as gathered by the Site Technology Coordination Groups (STCGs) complex-wide. Current EM investments in science and technology throughout the research community were also included in this analysis to avoid duplication of efforts. This is a progress report for the second year of the ESR Program (Fiscal Year 99). A report of activities is presented for the five ESR research investment areas: (a) Transport Aspects of Selective Mass Transport Agents, (b) Chemistry of Environmental Surfaces, (c) Materials Dynamics, (d) Characterization Science, and (e) Computational Simulation of Mechanical and Chemical Systems. In addition to the five technical areas, activities in the Science and Technology Foundations element of the program, e.g., interfaces between ESR and the …
Date: January 1, 2000
Creator: Miller, D. L.
System: The UNT Digital Library