Degree Discipline

Degree Level

A Compton camera for spectroscopic imaging from 100 keV to 1 MeV (open access)

A Compton camera for spectroscopic imaging from 100 keV to 1 MeV

A review of spectroscopic imaging issues, applications, and technology is presented. Compton cameras based on solid state semiconductor detectors stands out as the best system for the nondestructive assay of special nuclear materials. A camera for this application has been designed based on an efficient specific purpose Monte Carlo code developed for this project. Preliminary experiments have been performed which demonstrate the validity of the Compton camera concept and the accuracy of the code. Based on these results, a portable prototype system is in development. Proposed future work is addressed.
Date: December 31, 1998
Creator: Earnhart, J. R. D.
System: The UNT Digital Library
A Compton scatter camera for spectral imaging of 0.5 to 3.0 MeV gamma rays (open access)

A Compton scatter camera for spectral imaging of 0.5 to 3.0 MeV gamma rays

A prototype Compton scatter camera for imaging gamma rays has been built and tested. This camera addresses unique aspects of gamma-ray imaging at nuclear industrial sites, including gamma-ray energies in the 0.5 to 3.0 MeV range and polychromatic fields. Analytic models of camera efficiency, resolution and contaminating events are developed. The response of the camera bears strong similarity to emission computed tomography devices used in nuclear medicine. A direct Fourier based algorithm is developed to reconstruct two-dimensional images of measured gamma-ray fields. Iterative ART and MLE algorithms are also investigated. The point response of the camera to gamma rays of energies from 0.5 to 2.8 MeV is measured and compared to the analytic models. The direct reconstruction algorithm is at least ten times more efficient than the iterative algorithms are also investigated. The point response of the camera to gamma rays energies from 0.5 to 2.8 MeV is measured and compared to the analytic models. The direct reconstruction algorithm is at least ten times more efficient than the iterative algorithms and produces images that are, in general, of the same quality. Measured images of several phantoms are shown. Important results include angular resolutions as low as 4.4{degrees}, reproduction of phantom …
Date: December 31, 1994
Creator: Martin, J.B.
System: The UNT Digital Library
Mathematical modeling plasma transport in tokamaks (open access)

Mathematical modeling plasma transport in tokamaks

In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of …
Date: December 31, 1995
Creator: Quiang, Ji
System: The UNT Digital Library