Relative Yields of Nitrogen-17 Produced by 190-Mev Deuteron Bombardment (open access)

Relative Yields of Nitrogen-17 Produced by 190-Mev Deuteron Bombardment

"Yields of N¹⁷ relative to that produced in LiF have been measured in the 190-Mev deflected deuteron and the 380-Mev alpha beams of the 184-inch synchrocyclotron. The measurements have been performed in all the light elements from 0 through V, with the exception of Sc and the noble gases. In addition, yields were measured in the separated isotopes of Mg...Comparisons are made with other types of yield studies performed with neutrons and protons, and the areas of agreement are noted."
Date: April 13, 1955
Creator: Chupp, Warren William
System: The UNT Digital Library
Sum-Frequency Generation from Chiral Media and Interfaces (open access)

Sum-Frequency Generation from Chiral Media and Interfaces

Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.
Date: February 13, 2006
Creator: Ji, Na
System: The UNT Digital Library
Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel (open access)

Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O{sub 2}) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal …
Date: December 13, 2011
Creator: Rieken, Joel
System: The UNT Digital Library