Mutual Charge Neutralization of Gaseous Ions (open access)

Mutual Charge Neutralization of Gaseous Ions

The problem of the bimolecular rate constant, alpha , for the mutual charge neutralization reaction (ion-ion recombination) for ions formed by the vacuum ultraviolet photolysis of nitric oxide is considered. The pressure dependence of alpha over a pressure range of 10 to 600 torr for mixtures of a few hundred microns of NO with He, Ar, Kr, Xe, H/sub 2/, D/sub 2/, and N/sub 2/ was measured. From the low-pressure limit of alpha , the rate constant for charge neutralization in the absence of a third body was found to be k/sub o/ = 2.1 plus or minus 0.4 x 10/sup -7/ cm/sup 3// sec. The high-pressure limit of alpha was estimated to be 2.0 plus or minus 0.5 x 10/sup -6/ cm/sup 3//sec. The third-body efficiencies for promoting the charge-neutralization reaction were measured. The results, relative to He as the third-body gas, are H/sub 2/= 1.4 plus or minus 0.4, D/sub 2/= 1.5 plus or minus 0.4, Ar =3.6 plus or minus 0.8, Kr =4.3 plus or min11.0, N/sub 2/ = 5.2 plus or minus 1.1, and Xe = 6.8 plus or minus 1.5. The average ionic mobility in the gas mixtures is estimated, and the mobilities indicate that …
Date: July 11, 1963
Creator: Person, J. C.
System: The UNT Digital Library
The interaction of intense subpicosecond laser pulses with underdense plasmas (open access)

The interaction of intense subpicosecond laser pulses with underdense plasmas

Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and …
Date: May 11, 1995
Creator: Coverdale, C.A.
System: The UNT Digital Library
An experimental investigation of stimulated Brillouin scattering in laser-produced plasmas relevant to inertial confinement fusion (open access)

An experimental investigation of stimulated Brillouin scattering in laser-produced plasmas relevant to inertial confinement fusion

Despite the apparent simplicity of controlled fusion, there are many phenomena which have prevented its achievement. One phenomenon is laser-plasma instabilities. An investigation of one such instability, stimulated Brillouin scattering (SBS), is reported here. SBS is a parametric process whereby an electromagnetic wave (the parent wave) decays into another electromagnetic wave and an ion acoustic wave (the daughter waves). SBS impedes controlled fusion since it can scatter much or all of the incident laser light, resulting in poor drive symmetry and inefficient laser-plasma coupling. It is widely believed that SBS becomes convectively unstable--that is, it grows as it traverses the plasma. Though it has yet to be definitively tested, convective theory is often invoked to explain experimental observations, even when one or more of the theory`s assumptions are violated. In contrast, the experiments reported here not only obeyed the assumptions of the theory, but were also conducted in plasmas with peak densities well below quarter-critical density. This prevented other competing or coexisting phenomena from occurring, thereby providing clearly interpretable results. These are the first SBS experiments that were designed to be both a clear test of linear convective theory and pertinent to controlled fusion research. A crucial part of this …
Date: February 11, 1993
Creator: Bradley, K. S.
System: The UNT Digital Library