Degree Department

Language

Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets (open access)

Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets

Protons with energies ranging from 0.4 to 2.0 MeV were used to measure K-shell vacancy production cross sections (oVK) for N_2, CH_4, C_2H_4, C_2H_6, and CO_2 gas targets under single collision conditions. An electron-ion time-of-flight coincidence technique was used to determind the ration of the K-K electron capture cross section, OECK, to the K-vacancy production cross section, oVK. These ratios were then combined with the measured values of oVK to extract the K-K electron capture cross sections. Measurements were also made for protons of the same energy range but with regard to L-shell vacancy production and L-K electron capture for Ar targets. In addition, K-K electron capture cross sections were measured for 1.0 to 2.0 Mev 42He^_ ions on CH_4.
Date: May 1986
Creator: Toten, Arvel D.
System: The UNT Digital Library
M-Shell X-Ray Production of Gold, Lead, Bismuth, Uranium for Incident Hydrogen, Helium and Fluorine Ions (open access)

M-Shell X-Ray Production of Gold, Lead, Bismuth, Uranium for Incident Hydrogen, Helium and Fluorine Ions

Incident ¹H⁺ and ⁴He⁺ ions at 0.3-2.6 MeV and ¹⁹F^q⁺ ions at 25, 27 and 35 MeV were used to study the M-shell x-ray production cross sections of Au, Pb, Bi and U. For the incident fluorine ions, projectile charge state dependence of the cross sections were extracted from measurements made with varying target thicknesses ( ~1 to ~300 μg/cm²). The efficiency of the Si(Li) detector was determined by measuring the K-shell x-ray production of various low Z elements and comparing these values to the prediction of the CPSS theory. The experimental results are compared to the prediction of first Born approximation for direct ionization to the continuum and to the OBK of Nikolaev for the electron capture to the K-, L-, M-...shells of the incident ion. Comparison is also made with the ECPSSR theory that accounts for the energy loss, Coulomb deflection, and relativistic effects in the perturbed stationary state theory.
Date: December 1982
Creator: Mehta, Rahul
System: The UNT Digital Library