Target Thickness Dependence of Cu K X-Ray Production for Ions Moving in Thin Solid Cu Targets (open access)

Target Thickness Dependence of Cu K X-Ray Production for Ions Moving in Thin Solid Cu Targets

Measurements of the target thickness dependence of the target x-ray production yield for incident fast heavy ions are reported for thin solid Cu targets as a function of both incident projectile atomic number and energy. The incident ions were F, Al, Si, S, and CI. The charge state of the incident ions was varied in each case to study the target x-ray production for projectiles which had an initial charge state, q, of q = Z₁, q = Z₁ - 1, and q < Z₁ - 1 for F, Al, Si, and S ions and q = Z₁ - 1 and q < Z₁ - 1 for C1 ions. The target thicknesses ranged from 2 to 183 ug/cm². In each case the Cu K x-ray yield exhibits a complex exponential dependence on target thickness. A two-component model which includes contributions to the target x-ray production due to ions with 0 and 1 K vacancies and a three-component model which includes contributions due to ions with 0, 1, and 2 K vacancies are developed to describe the observed target K x-ray yields. The two-component model for the C1 data and the three-component model for the F, Al, Si, S, and C1 …
Date: December 1977
Creator: Gardner, Raymond K.
System: The UNT Digital Library
The Angular Distribution of the Deuterium-Deuterium Neutrons with 100 Kev Deuterons (open access)

The Angular Distribution of the Deuterium-Deuterium Neutrons with 100 Kev Deuterons

It is the purpose of this paper to present the experimental techniques used in obtaining. 3.25 MeV neutrons from the H2(d,n)He3 reaction, as well as an analysis of the experimental data.
Date: 1956
Creator: Hackfield, Bobby J.
System: The UNT Digital Library
Line Width Parameters and Center Frequency Shifts in the Rotational Spectrum of Methyl Cyanide (open access)

Line Width Parameters and Center Frequency Shifts in the Rotational Spectrum of Methyl Cyanide

Measurement of the line width parameters of a molecule is of interest because collision diameters can be calculated from them. This gives an effective size of the molecule when it is involved in interactions with other molecules. Further, specific types of interactions can be inferred from detailed information about the dependence of the line width upon pressure. In this paper, an experiment for measuring line width parameters for methyl cyanide is described and the results of the experiment are analyzed. This investigation was successful in obtaining precise values for the line width parameter for the J-J' = 0-1, J-J'= 1-2, and J-J' = 2-3 transitions of methyl cyanide which agree with experimental values of other researchers where available. It was found that standing waves were the dominant effect in the measurement of center frequency shift.
Date: May 1978
Creator: Swindle, David L.
System: The UNT Digital Library
Microwave Line Widths of the Asymmetric Top Formic Acid Molecule (open access)

Microwave Line Widths of the Asymmetric Top Formic Acid Molecule

This work consisted of an experimental investigation of the formic acid (HCOOH) molecule's rotational spectrum. Measurements of line widths were obtained for J = 5, 12, 13, 19, and 20 for a pressure range from 1 to 10 microns. A linear behavior between Av and p was observed as predicted by theory. The line width parameter Avp was observed to depend on the quantum number J. Hard sphere collision diameters b1 were calculated using the obtained AvP values. These deduced hard sphere values were found to be larger than the physical size of the molecule. This result was found to be in general agreement with other investigation in which long range forces (dipole-dipole) dominate.
Date: August 1974
Creator: Maynard, Wayne R.
System: The UNT Digital Library
Collision Broadening of Microwave Spectral Lines of Monomeric Formaldehyde and Formic Acid (open access)

Collision Broadening of Microwave Spectral Lines of Monomeric Formaldehyde and Formic Acid

Line width parameters for a number of spectral lines in the pure rotational spectrum of formaldehyde (CH20) and formic acid (HCOOH) have been measured using a sourcemodulated microwave spectrograph. All transitions studied in this investigation were of the type ΔJ=O (i.e. Q-branch transitions), with ΔK-1=0 and ΔK+1 =+l. The center frequencies of the measured lines varied from 8662.0 MHz to 48612.70 MHz. The experimentally determined collision diameters for self broadening interactions involving HCOOH and CH2 Q molecules were found to be 2 - 27 per cent less than those calculated by the Murphy-Boggs theory of collision broadening. Much better agreement between a simplified broadening scheme for symmetric top molecules and the observed foreign-gas collision diameters is obtained by using Birnbaum's theory.
Date: August 1975
Creator: Venkatachar, Arun C.
System: The UNT Digital Library
Microwave Spectra of ¹³C Isotopic Species of Methyl Cyanide in the Ground, v₈=1 and v₈=2 Vibrational States (open access)

Microwave Spectra of ¹³C Isotopic Species of Methyl Cyanide in the Ground, v₈=1 and v₈=2 Vibrational States

The problem of the quadrupole interaction occurring in a vibrating-rotating C₃v symmetric top molecule has been studied in detail. The quadrupole interaction has been treated as another perturbation term to a general frequency expression accounting for the vibrating-rotating interaction of the molecule so that a complete frequency formula is obtained for both interactions, and from which hyperfine spectral components are predicted and measured. The hyperfine transitions in the ground, and v₈=1 and v₈=2 excited vibrational states of the ¹³C isotopes of methyl cyanide have been investigated in the frequency range 17-72 GHz, primarily in the low J transitions (0≤J≤3). The study of the ground state of isotope i3CH3i3CN, and the v₈=1, v₈=2 excited vibrational states for all the isotopes have been conducted here for the first time. A substantial perturbation has been discovered and discussed at the ΔJ=3→4 transitions within the Kl=1 sets in the v₈=1 mode for isotopes ¹³CH₃CN and CH₃¹³CN. A total of 716 hyperfine transitions have been assigned from measurements, only 7 of which have been measured previously. A total of 84 molecular constants have been reported; 70 of these constants are derived for the first time from microwave data.
Date: May 1988
Creator: Tam, Hungsze
System: The UNT Digital Library
A Comprehensive Model for the Rotational Spectra of Propyne CH₃CCH in the Ground and V₁₀=1,2,3,4,5 Vibrational States (open access)

A Comprehensive Model for the Rotational Spectra of Propyne CH₃CCH in the Ground and V₁₀=1,2,3,4,5 Vibrational States

The energy states of C₃ᵥ symmetric top polyatomic molecules were studied. Both classical and quantum mechanical methods have been used to introduce the energy states of polyatomic molecules. Also, it is shown that the vibration-rotation spectra of polyatomic molecules in the ground and excited vibrational states can be predicted by group theory. A comprehensive model for predicting rotational frequency components in various v₁₀ vibrational levels of propyne was developed by using perturbation theory and those results were compared with other formulas for C₃ᵥ symmetric top molecules. The v₁₀=1,2,3 and ground rotational spectra of propyne in the frequency range 17-70 GHz have been reassigned by using the derived comprehensive model. The v₁₀=3 and v₁₀=4 rotational spectra of propyne have been investigated in the 70 GHz, and 17 to 52 GHz regions, respectively, and these spectral components assigned using the comprehensive model. Molecular constants for these vibrationally excited states have been determined from more than 100 observed rotational transitions. From these experimentally observed components and a model based upon first principles for C₃ᵥ symmetry molecules, rotational constants have been expressed in a form which enables one to predict rotational components for vibrational levels for propyne up to v₁₀=5. This comprehensive model also …
Date: December 1986
Creator: Rhee, Won Myung
System: The UNT Digital Library
Anomalous Behavior in the Rotational Spectra of the v₈=2 and the v₈=3 Vibrations for the ¹³C and ¹⁵N Tagged Isotopes of the CH₃CN Molecule in the Frequency Range 17-95 GHz (open access)

Anomalous Behavior in the Rotational Spectra of the v₈=2 and the v₈=3 Vibrations for the ¹³C and ¹⁵N Tagged Isotopes of the CH₃CN Molecule in the Frequency Range 17-95 GHz

The rotational microwave spectra of the three isotopes (^13CH_3^12C^15N, ^12CH_3^13C^15N, and ^13CH_3^13C^15N) of the methyl cyanide molecule in the v_8=3, v_8=2, v_7=1 and v_4=1 vibrational energy levels for the rotational components 1£J£5 (for a range of frequency 17-95 GHz.) were experimentally and theoretically examined. Rotational components in each vibration were measured to determine the mutual interactions in each vibration between any of the vibrational levels investigated. The method of isotopic substitution was employed for internal tuning of each vibrational level by single and double substitution of ^13C in the two sites of the molecule. It was found that relative frequencies within each vibration with respect to another vibration were shifted in a systematic way. The results given in this work were interpreted on the basis of these energy shifts. Large departure between experimentally measured and theoretically predicted frequency for the quantum sets (J, K=±l, ϑ=±1), Kϑ-l in the v_8=3 vibrational states for the ^13c and ^15N tagged isotopes of CH_3CN showed anomalous behavior which was explained as being due to Fermi resonance. Accidently strong resonances (ASR) were introduced to account for some departures which were not explained by Fermi resonance.
Date: December 1990
Creator: Al-Share, Mohammad A. (Mohammad Abdel)
System: The UNT Digital Library
K-, L-, and M-Shell X-Ray Production Cross Sections for Beryllium, Aluminum and Argon Ions Incident Upon Selected Elements (open access)

K-, L-, and M-Shell X-Ray Production Cross Sections for Beryllium, Aluminum and Argon Ions Incident Upon Selected Elements

Incident 0.5 to 2.5 MeV charged particle beams were used to ionize the inner-shells of selected targets and study their subsequent emission of characteristic x-rays. ⁹Be⁺ ions were used to examine K-shell x-ray production from thin F, Na, Al, Si, P, Cl, and K targets, L-shell x-ray production from thin Cu, An, Ge, Br, Zr and Ag targets, and M-shell x-ray production from thin Pr, Nd, Eu, Dy, Ho, Hf, W, Au, Pb and Bi targets. L-shell x-ray production cross sections were also measured for ²⁷Al⁺ ions incident upon Ni, Cu, Zn, As, Zr, and Pd targets. M-shell x-ray production cross sections were measure for ²⁷Al⁺ and ⁴⁰Ar⁺ ions incident upon Pr, Nd, Gd, Dy, Lu, Hf, Au, Pb, Bi, and U targets. These measurements were performed using the 2.5 MV Van de Graaff accelerator at North Texas State University. The x-rays were detected with a Si(Li) detector whose efficiency was determined by fitting a theoretical photon absorption curve to experimentally measure values. The x-ray yields were normalized to the simultaneously measured Rutherford backscattered (RBS) yields which resulted in an x-ray production cross section per incident ion. The RBS spectrum was obtained using a standard surface barrier detector calibrated for …
Date: December 1986
Creator: Price, Jack Lewis
System: The UNT Digital Library
Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions (open access)

Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions

The charge state dependence of M-shell x-ray production cross sections of 67HO bombarded by 2-12 MeV carbon ions with and without K-vacancies are reported. The experiment was performed using an NEC 9SDH-2 tandem accelerator at the Ion Beam Modification and Analysis Laboratory of the University of North Texas. The high charge state carbon ions were produced by a post-accelerator stripping gas cell. Ultra-clean holmium targets were used in ion-atom collision to generate M-shell x rays at energies from 1.05 to 1.58 keV. The x-ray measurements were made with a windowless Si(Li) x-ray detector that was calibrated using radiative sources, particle induced x-ray emission (PIXE), and the atomic field bremsstrahlung (AFB) techniques.
Date: August 1994
Creator: Sun, Hsueh-Li
System: The UNT Digital Library
An Experimental Study of Collision Broadening of some Excited Rotational States of the Bending Vibration of Methyl Cyanide (open access)

An Experimental Study of Collision Broadening of some Excited Rotational States of the Bending Vibration of Methyl Cyanide

A double modulation microwave spectrometer is used to evaluate the linewidth parameters for some excited rotational components in the bending vibration v_8 of 13CH3 13C 15N and 13CH3C15N isotopomers of methyl cyanide. The linewidth parameters for self-broadening of the ΔJ=2←1 rotational components for the ground v_8 , 1v_8, and the 2v_8 vibrations were determined over a pressure range of 1 to 13 mtorr and at a temperature of 300 K. The double modulation technique is used to explore the high eighth derivative of the line shape profile of the spectral line. This technique proved to give good signal-to-noise ratios and enabled the recovery of weak signals. An experimental method is developed to correct for source modulation broadening. The tests of the ratios of the two inner peak's separation of the eighth derivative of the line showed that they were up to 95% similar to those for a Lorentzian line shape function. The line shapes were assumed to be Lorentzian for the theoretical analysis of the derivative profiles and comparisons were made between experiment and theory on this basis. Dipole moments for vibrationally excited states were calculated from linewidth parameters and show systematic decrease with the increase of excitation. Impact parameters …
Date: May 1993
Creator: Hajsaleh, Jamal Y. (Jamal Yousef)
System: The UNT Digital Library
A Study of L-Shell X-Ray Production Cross Sections Due to [Hydrogen-1], [Helium-4], and [Lithium-7] Ion Bombardment of Selected Thin Rare Earth and ₈₂Pb Targets (open access)

A Study of L-Shell X-Ray Production Cross Sections Due to [Hydrogen-1], [Helium-4], and [Lithium-7] Ion Bombardment of Selected Thin Rare Earth and ₈₂Pb Targets

Thin target L-Shell x-ray production cross sections for protons incident on ₆₂Sm and ₇₀Yb in the energy range of 0.3 to 2.4 MeV/amu, alpha particles incident on ₆₂Sm, ₇₀Yb, and ₈₂Pb in the energy range of 0.15 to 4.8 MeV/amu, and lithium ions incident on ₅₈Ce, ₆₀Nd, ₆₂Sm, ₆₆Dy, ₆₇Ho, ₇₀Yb, and ₈₂Pb in the energy range of 0.8 to 4.4 MeV/amu have been measured. The cross section data have been compared to the planewave Born approximation (PWBA) and the PWBA modified to include binding energy and Coulomb deflection effects. The Lα₁,₂ x-ray production cross sections are best represented by the PWBA modified to include both the binding energy and Coulomb deflection effects (PWBA-BC) over the entire incident ion, incident energy, and target ranges studied. However, the Lγ₁ and Lγ₂,₃,₍₆₎ x-ray production cross sections are best represented by the PWBA except at the lower ion energies, where both the PWBA and PWBA-BC are in disagreement with the data. The comparison of Lα₁,₂/Lγ₂,₃,₍₆₎ ratios to theory reveals that the PWBA-BC does not predict the inflection point substantiated by the data, and the agreement between the data and the PWBA-BC becomes worse as the atomic number of the incident ion increases. Comparison …
Date: May 1978
Creator: Light, Glenn Michael
System: The UNT Digital Library
Charge State Dependence of L-Shell X-Ray Production Cross Sections of ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Energetic Oxygen Ions (open access)

Charge State Dependence of L-Shell X-Ray Production Cross Sections of ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Energetic Oxygen Ions

Charge state dependence of L-shell x-ray production cross sections have been measured for 4-14 MeV ¹⁶O^q (q=3⁺-8⁺) ions incident on ultra-clean, ultra-thin copper, and for 12 MeV ¹⁶O^q (q=3⁺-8⁺) on nickel, zinc, gallium and germanium solid foils. L-shell x-ray production cross section were measured using target foils of thickness ≤0.6 μg/cm² evaporated onto 5 μg/cm² carbon backings. Oxygen ions at MeV energies and charge state q were produced using a 3MV 9SDH-2 National Electrostatics Corporation tandem Pelletron accelerator. Different charge states, with and without K-vacancies, were produced using a post acceleration nitrogen striping gas cell or ¹²C stripping foils. L-shell x-rays from ultra-thin ₂₈Ni, ₂₉Cu,₃₀Zn,₃₁Ga, and ₃₂Ge targets were measured using a Si(Li) x-ray detector with a FWHM resolution of 135 eV at 5.9 keV. The scattered projectiles were detected simultaneously by means of silicon surface barrier detectors at angle of 45° and 169° with respect to the beam direction. The electron capture (EC) as well as direct ionization (DI) contributions were determined from the projectile charge state dependence of the target x-ray production cross sections under single collision conditions. The present work was undertaken to expand the measurements of L-shell x-ray production cross sections upon selected elements with low …
Date: August 1996
Creator: Azordegan, Amir R. (Amir Reza)
System: The UNT Digital Library
Carbon K-Shell X-Ray and Auger-Electron Cross Sections and Fluorescence Yields for Selected Molecular Gases by 0.6 To 2 .0 MeV Proton Impact (open access)

Carbon K-Shell X-Ray and Auger-Electron Cross Sections and Fluorescence Yields for Selected Molecular Gases by 0.6 To 2 .0 MeV Proton Impact

Absolute K-shell x-ray cross sections and Auger-electron cross sections are measured for carbon for 0.6 to 2.0 MeV proton incident on CH₄, n-C₄H₁₀ (n-Butane), i-C₄H₁₀ (isobutane), C₆H₆ (Benzene), C₂H₂ (Acetylene), CO and CO₂. Carbon K-shell fluorescence yields are calculated from the measurements of x-ray and Auger-electron cross sections. X-ray cross sections are measured using a variable geometry end window proportional counter. An alternate method is described for the measurement of the transmission of the proportional counter window. Auger electrons are detected by using a constant transmission energy Π/4 parallel pi ate electrostatic analyzer. Absolute carbon K-shell x-ray cross sections for CH₄ are compared to the known results of Khan et al. (1965). Auger-electron cross sections for proton impact on CH₄ are compared to the known experimental values of RΦdbro et al. (1979), and to the theoretical predictions of the first Born and ECPSSR. The data is in good agreement with both the first Born and ECPSSR, and within our experimental uncertainties with the measurements of RΦdbro et al. The x-ray cross sections, Auger-electron cross sections and fluorescence yields are plotted as a function of the Pauling charge, and show significant variations. These changes in the x-ray cross sections are compared …
Date: August 1986
Creator: Bhalla, Raj P. (Raj Pal), 1948
System: The UNT Digital Library
Theoretical and Experimental Linewidth Parameters in the Rotational Spectrum of Nitrogen Dioxide (open access)

Theoretical and Experimental Linewidth Parameters in the Rotational Spectrum of Nitrogen Dioxide

Contributions to the second order collision efficiency function S ⁽²⁾ (b), used in semiclassical perturbation approaches to pressure broadening of microwave and infrared spectra, due to several leading terms, dipole and quadrupole components, in the expansion of the intermolecular interaction energy are derived by method of irreducible spherical tensor operators for molecules of arbitrary symmetry. Results are given explicitly in terms of dipole and quadrupole line strengths. General expressions for dipole moment line strength in the asymmetric rotor basis as well as quadrupole moment line strength for the special case of molecules with two independent quadrupole moment components are derived. Computer programs for calculating linewidth parameters in the rotational spectrum of ¹⁴NO₂ based on Anderson and Murphy and Boggs theories are presented.
Date: December 1982
Creator: Moazzen-Ahmadi, Mohamad Nasser
System: The UNT Digital Library
L-shell X-ray production cross sections of ₂₉Cu, ₃₂Ge, ₃₇Rb, ₃₈Sr, and ₃₉Y and M-shell X-ray production cross sections of ₇₉Au, ₈₂Pb, ₈₃Bi, ₉₀Th, and ₉₂U by 70-200 keV protons (open access)

L-shell X-ray production cross sections of ₂₉Cu, ₃₂Ge, ₃₇Rb, ₃₈Sr, and ₃₉Y and M-shell X-ray production cross sections of ₇₉Au, ₈₂Pb, ₈₃Bi, ₉₀Th, and ₉₂U by 70-200 keV protons

L-shell x-ray production cross sections have been measured for thin targets of 29Cu, 32Ge, 37Rb, 38Sr, and 39Y. M-shell x-ray production cross sections have been measured for thin targets of 79Au, 82Pb, 83Bi, 90Th, and 92U. All targets were irradiated with a beam of H+ ions with energies in a range from 70 to 200 keV. Experimental cross sections are compared to other measurements at higher energies and to first Born (Plane Wave Born Approximation for direct ionization and Oppenheimer-Brinkman-Kramers-Nikolaev approximation for electron capture) and the ECPSSR (Energy loss, Coulomb deflection, Perturbed Stationary State calculations with Relativistic effects) theoretical cross sections.
Date: August 1989
Creator: Gressett, David
System: The UNT Digital Library
A System for Measurement of Negative-Ion Charge-Exchange Cross Sections (open access)

A System for Measurement of Negative-Ion Charge-Exchange Cross Sections

A radio-frequency positive-ion source and a fifty-kilovolt linear accelerator were designed and constructed in order to produce sizable quantities of hydrogen, helium, nitrogen, neon, and argon. Plans were then made to equip this ion source with charge-exchange apparatus suitable for charge-exchange cross-sectional measurements. It is the purpose of this paper to present the design of the equipment and to present operational knowledge of the equipment and of ion beams which are producible.
Date: January 1960
Creator: Wingo, Dale T.
System: The UNT Digital Library
Design and Construction of a Positive Radio-Frequency Ion Source for the Production of Negative Ions (open access)

Design and Construction of a Positive Radio-Frequency Ion Source for the Production of Negative Ions

It is the purpose of this paper to present a detailed account of the design and construction of this positive-ion source and associated equipment.
Date: August 1958
Creator: Thompson, B. Cecil
System: The UNT Digital Library
Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips (open access)

Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips

The growth mechanism of chemical vapor deposition (CVD) grown homo-epitaxial diamond (110) and (111) films was studied using ultrahigh vacuum (UHV) scanning tunneling microscopy (STM). In addition, the field emission properties of diamond coated molybdenum microtips were studied as a function of exposure to different gases.
Date: May 1998
Creator: Lim, Seong-Chu
System: The UNT Digital Library
Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 335 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode (open access)

Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 335 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode

The frequency dependence and temperature dependence of the complex dielectric constant of water is of great interest. The temperature dependence of the physical properties of water given in the literature, specific heat, thermal conductivity, electric conductivity, pH, etc. are compared to the a. c. (microwave) and d. c. conductivity of water with a variety of concentration of different substances such as HC1, NaCl, HaS04, etc. When each of these properties is plotted versus inverse absolute temperature, it can be seen that each sample shows "transition temperatures". In this work, Slater's perturbation equations for a resonant microwave cavity were used to analyze the experimental results for the microwave data.
Date: August 1994
Creator: Wang, Henry F. S. (Henry Fu-Sen)
System: The UNT Digital Library
Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application (open access)

Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application

This research studied the Anderson localization of electrons in two-channel wires with correlated disorder and in DNA molecules. It involved an analytical calculation part where the formula for the inverse localization length for electron states in a two-channel wire is derived. It also involved a computational part where the localization length is calculated for some DNA molecules. Electron localization in two-channel wires with correlated disorder was studied using a single-electron tight-binding model. Calculations were within second-order Born-approximation to second-order in disorder parameters. An analytical expression for localization length as a functional of correlations in potentials was found. Anderson localization in DNA molecules were studied in single-channel wire and two-channel models for electron transport in DNA. In both of the models, some DNA sequences exhibited delocalized electron states in their energy spectrum. Studies with two-channel wire model for DNA yielded important link between electron localization properties and genetic information.
Date: December 2007
Creator: Bagci, V. M. Kemal
System: The UNT Digital Library

Ultrasonic Wave Propagation and Localization in a Nonreciprocal Phononic Crystal

Ultrasonic wave propagation through a two-dimensional nonreciprocal phononic crystal with asymmetric aluminum rods in viscous water is studied for its application in Anderson localization and trapping of acoustic energy. A one-dimensional disorder in the otherwise 2D periodic crystal is introduced by disorienting the asymmetric rods along the rows and by keeping them equally oriented along the columns. An exponential decay of sound waves travelling along the direction of disorder is observed demonstrating Anderson localization whereas sound propagates as extended wave along the ordered direction. Localization length for the case of strong disorder with high randomness in the orientation of rods and weak disorder with weak fluctuations in the orientation of rods is evaluated. The degree of randomness in the orientation of the rods controls the localization length of the wave. Thouless's theoretical prediction for the scaling of Lyapunov exponent with disorder is experimentally observed for weak disorder at frequency in the transmission band and anomalous scaling is observed for band edge frequency. Transmission spectra of acoustic waves is also measured for opposite direction of propagation and nonreciprocity is observed for the exponentially weak transmission in the disordered direction as well as for extended states in the ordered direction. Breaking of …
Date: December 2022
Creator: Dhillon, Jyotsna
System: The UNT Digital Library
L-Shell X-Ray Production Cross Sections for ₂₀Ca, ₂₆Fe, ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Hydrogen, Helium, and Lithium Ions (open access)

L-Shell X-Ray Production Cross Sections for ₂₀Ca, ₂₆Fe, ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Hydrogen, Helium, and Lithium Ions

L-shell x-ray production cross sections are presented for Fe, Ni, Cu, Zn, Ga, and Ge by 0.5- to 5.0-MeV protons and by 0.5- to 8.0-MeV helium ions and Ca, Fe, Ni, Cu, and Ge by 0.75- to 4.5-MeV lithium ions. These measurements are compared to the first Born theory and the perturbed-stationary- state theory with energy-loss, Coulomb deflection, and relativistic corrections (ECPSSR). The results are also compared to previous experimental investigations. The high precision x-ray measurements were performed with a windowless Si(Li) detector. The efficiency of the detector was determined by the use of thin target atomic-field bremsstrahlung produced by 66.5 keV electrons. The measured bremsstrahlung spectra were compared to theoretical bremsstrahlung distributions in order to obtain an efficiency versus energy curve. The targets for the measurement were manufactured by the vacuum evaporation of the target element onto thin foils of carbon. Impurities in the carbon caused interferences inthe L-shell x-ray peaks. Special cleansing procedures were developed that reduced the impurity concentrations in the carbon foil, making the use of less than 5 μg/cm^2 targets possible. The first Born theory is seen to greatly overpredict the data at low ion energies. The ECPSSR theory matches the data very well at …
Date: May 1992
Creator: McNeir, Michael Ridge
System: The UNT Digital Library
Thorium and Uranium M-shell X-ray Production Cross Sections for 0.4 – 4.0 MeV Protons, 0.4 - 6.0 MeV Helium Ions, 4.5 – 11.3 MeV Carbon Ions, and 4.5 – 13.5 MeV Oxygen Ions. (open access)

Thorium and Uranium M-shell X-ray Production Cross Sections for 0.4 – 4.0 MeV Protons, 0.4 - 6.0 MeV Helium Ions, 4.5 – 11.3 MeV Carbon Ions, and 4.5 – 13.5 MeV Oxygen Ions.

The M-shell x-ray production cross section for thorium and uranium have been determined for protons of energy 0.4 - 4.0 MeV, helium ions of energy 0.4 - 6.0 MeV, carbon ions of energy 4.5 - 11.3 MeV and oxygen ions of energy 4.5 - 13.5 MeV. The total cross sections and the cross sections for individual x-ray peaks in the spectrum, consisting of the following transitions Mz (M4-N2, M5-N3, M4-N3), Ma (M5-N6,7), Mb (M4-N6, M5-O3, M4- O2), and Mg (M4-O3, M5-P3, M3-N4, M3-N5), were compared to the theoretical values determined from the PWBA + OBKN and ECUSAR. The theoretical values for the carbon and oxygen ions were also modified to take into account the effects of multiple ionizations of the target atom by the heavier ions. It is shown that the results of the ECUSAR theory tend to provide better agreement with the experimental data.
Date: May 2011
Creator: Phinney, Lucas C.
System: The UNT Digital Library