Degree Discipline

Wind Energy-related Wildlife Impacts: Analysis and Potential Implications for Rare, Threatened and Endangered Species of Birds and Bats in Texas (open access)

Wind Energy-related Wildlife Impacts: Analysis and Potential Implications for Rare, Threatened and Endangered Species of Birds and Bats in Texas

Texas currently maintains the highest installed nameplate capacity and does not require publicly available post-construction monitoring studies that examine the impacts of wind energy production on surrounding fauna. This thesis examines potential wind energy impacts on avian and bat species in Texas through a three-part objective. The first two objectives synthesize literature on variables attractive to species within wind development areas and estimate impacted ranges outside of Texas, based on studies examining wind energy's environmental impacts. The third objective focuses on Texas wind development potential for interaction with rare, threatened and endangered species of birds and bats using GIS analysis with a potential hazard index (PHI) model, which addresses broad-spectrum, high risk variables examined within the first two objectives. Assuming areas with higher wind speeds have potential for wind development, PHI values were calculated for 31 avian and ten bat species, based on an analysis of species range data obtained from the Texas Parks and Wildlife Department and wind data obtained from the National Renewable Energy Laboratory. Results indicate one avian species, Tympanuchus pallidicinctus, is at high risk for wind development interaction on an annual basis, with 20 species of birds and nine species of bats at higher risk during …
Date: August 2010
Creator: Graham, Tara L.
System: The UNT Digital Library
Evaluation of the Developmental Effects and Bioaccumulation Potential of Triclosan and Triclocarban Using the South African Clawed Frog, Xenopus Laevis (open access)

Evaluation of the Developmental Effects and Bioaccumulation Potential of Triclosan and Triclocarban Using the South African Clawed Frog, Xenopus Laevis

Triclosan (TCS) and triclocarban (TCC) are antimicrobials found in U.S. surface waters. This dissertation assessed the effects of TCS and TCC on early development and investigated their potential to bioaccumulate using Xenopus laevis as a model. The effects of TCS on metamorphosis were also investigated. For 0-week tadpoles, LC50 values for TCS and TCC were 0.87 mg/L and 4.22 mg/L, respectively, and both compounds caused a significant stunting of growth. For 4-week tadpoles, the LC50 values for TCS and TCC were 0.22 mg/L and 0.066 mg/L; and for 8-week tadpoles, the LC50 values were 0.46 mg/L and 0.13 mg/L. Both compounds accumulated in Xenopus. For TCS, wet weight bioaccumulation factors (BAFs) for 0-, 4- and 8-week old tadpoles were 23.6x, 1350x and 143x, respectively. Lipid weight BAFs were 83.5x, 19792x and 8548x. For TCC, wet weight BAFs for 0-, 4- and 8-week old tadpoles were 23.4x, 1156x and 1310x. Lipid weight BAFs were 101x, 8639x and 20942x. For the time-to-metamorphosis study, TCS showed an increase in weight and snout-vent length in all treatments. Exposed tadpoles metamorphosed approximately 10 days sooner than control tadpoles. For the hind limb study, although there was no difference in weight, snout-vent length, or hind limb …
Date: December 2010
Creator: King, Marie Kumsher
System: The UNT Digital Library