Deformation Micro-mechanisms of Simple and Complex Concentrated FCC Alloys (open access)

Deformation Micro-mechanisms of Simple and Complex Concentrated FCC Alloys

The principal objective of this work was to elucidate the effect of microstructural features on the intrinsic dislocation mechanisms in two FCC alloys. First alloy Al0.1CoCrFeNi was from a new class of material known as complex concentrated alloys, particularly high entropy alloys (HEA). The second was a conventional Al-Mg-Sc alloy in ultrafine-grained (UFG) condition. In the case of HEA, the lattice possess significant lattice strain due to the atomic size variation and cohesive energy differences. Moreover, both the lattice friction stress and the Peierls barrier height are significantly larger than the conventional FCC metals and alloys. The experimental evidences, so far, provide a distinctive identity to the nature and motion of dislocations in FCC HEA as compared to the conventional FCC metals and alloys. Hence, the thermally activated dislocation mechanisms and kinetics in HEA has been studied in detail. To achieve the aim of examining the dislocation kinetics, transient tests, both strain rate jump tests and stress relaxation tests, were conducted. Anomalous behavior in dislocation kinetics was observed. Surprisingly, a large rate sensitivity of the flow stress and low activation volume of dislocations were observed, which are unparalleled as compared to conventional CG FCC metals and alloys. The observed trend …
Date: December 2015
Creator: Komarasamy, Mageshwari
System: The UNT Digital Library

Synergistic Effects of Lattice Instability and Chemical Ordering on FCC Based Complex Concentrated Alloys

The current work investigates how the interactions among constituent elements in high entropy alloys or complex concentrated alloys (HEA/CCAs) can lead to lattice instability and local chemical ordering which in turn affects the microstructure and properties of these alloys. Using binary enthalpies of mixing, the degree of ordering in concentrated multi-component solid solutions was successfully tailored by introducing Cr, Al and Ti in a CoFeNi HEA/CCA. CoFeNi was selected as the base alloy to achieve a close to random solid solution as indicated by the near-zero binary enthalpies in CoFeNi alloy system. The room temperature tensile properties of these alloys with varied degree of ordering follow a consistent trend where yield stress increased with degree of ordering. This novel approach provides a new alloy design strategy to obtain controlled ordering tendencies and consequently targeted mechanical properties. Further studies on specific alloys have been conducted to utilize this ordering tendency in attaining precipitation strengthening. For this purpose, Al, Ti and Ni were selected to promote ordering and Co, Fe, and Cr were chosen to strengthen the solid solution matrix. In Al0.25CoFeNi HEA/CCA, the ordering tendency between Al and Ni results in a competition between two long-range ordered phases, L12 and B2. …
Date: August 2021
Creator: Dasari, Sriswaroop
System: The UNT Digital Library
Developing Precipitation Hardenable High Entropy Alloys (open access)

Developing Precipitation Hardenable High Entropy Alloys

High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys as a candidate system. The composition gradient has been achieved from CrCuFeNi2 to Al1.5CrCuFeNi2 over a length of ~25 mm, deposited using the laser engineered net shaping process from a blend of elemental powders. With increasing Al content, there was a gradual change from an fcc-based microstructure (including the ordered L12 phase) to a bcc-based microstructure (including the ordered B2 phase), accompanied with a progressive increase in microhardness. Based on this combinatorial assessment, two promising fcc-based precipitation strengthened systems have been identified; Al0.3CuCrFeNi2 and Al0.3CoCrFeNi, …
Date: August 2017
Creator: Gwalani, Bharat
System: The UNT Digital Library

A Study on High Pressure-Induced Phase Transformations of a Metastable Complex Concentrated Alloy System with Varying Amounts of Copper

Complex concentrated alloys (CCAs) offer the unique ability to tune composition and microstructure to achieve a wide range of mechanical performance. Recently, the development of metastable CCAs has led to the creation of transformation-induced plasticity (TRIP) CCAs. Similar to TRIP steels, TRIP CCAs are more effective at absorbing high strain rate loads when TRIP is activated during the loading process. The objective of our study is to investigate the effect of copper on the critical pressure for activating TRIP and the high pressure stability of a Fe(40-X)Mn20Cr15Co20Si5CuX TRIP CCA, where x varies from 0 to 3 at.% Cu. To achieve this goal, diamond anvil cell testing during in-situ synchrotron radiation X-ray diffraction was performed using both a monochromatic wide angle X-ray scattering (WAXS) beam and, for the first time ever, a polychromatic Laue diffraction beam on a CCA. Laue diffraction allows for real-time phase evolution tracking of the γ-fcc → ε-hcp transformation in a high pressure environment. Based on the results, a new method for processing and preparation of high pressure samples without changing the microstructure of sample was developed. This new method can be used to prepare any CCA samples for high pressure testing.
Date: May 2022
Creator: Reynolds, Christopher
System: The UNT Digital Library
Indentation induced deformation in metallic materials. (open access)

Indentation induced deformation in metallic materials.

Nanoindentation has brought in many features of research over the past decade. This novel technique is capable of producing insights into the small ranges of deformation. This special point has brought a lot of focus in understanding the deformation behavior under the indenter. Nickel, iron, tungsten and copper-niobium alloy system were considered for a surface deformation study. All the samples exhibited a spectrum of residual deformation. The change in behavior with indentation and the materials responses to deformation at low and high loads is addressed in this study. A study on indenter geometry, which has a huge influence on the contact area and subsequently the hardness and modulus value, has been attempted. Deformation mechanisms that govern the plastic flow in materials at low loads of indentation and their sensitivity to the rate of strain imparted has been studied. A transition to elastic, plastic kind of a tendency to an elasto-plastic tendency was seen with an increase in the strain rate. All samples exhibited the same kind of behavior and a special focus is drawn in comparing the FCC nickel with BCC tungsten and iron where the persistence of the elastic, plastic response was addressed. However there is no absolute reason …
Date: December 2005
Creator: Vadlakonda, Suman
System: The UNT Digital Library
Electrochemical synthesis of CeO2 and CeO2/montmorillonite nanocomposites. (open access)

Electrochemical synthesis of CeO2 and CeO2/montmorillonite nanocomposites.

Nanocrystalline cerium oxide thin films on metal and semiconductor substrates have been fabricated with a novel electrodeposition approach - anodic oxidation. X-ray diffraction analysis indicated that as-produced cerium oxide films are characteristic face-centered cubic fluorite structure with 5 ~ 20 nm crystal sizes. X-ray photoelectron spectroscopy study probes the non-stoichiometry property of as-produced films. Raman spectroscopy and Scanning Electron Microscopy have been applied to analyze the films as well. Deposition mode, current density, reaction temperature and pH have also been investigated and the deposition condition has been optimized for preferred oriented film formation: galvanostatic deposition with current density of -0.06 mA/cm2, T > 50oC and 7 < pH < 10. Generally, potentiostatic deposition results in random structured cerium oxide films. Sintering of potentiostatic deposited cerium oxide films leads to crystal growth and reach nearly full density at 1100oC. It is demonstrated that in-air heating favors the 1:2 stoichiometry of CeO2. Nanocrystalline cerium oxide powders (4 ~ 10 nm) have been produced with anodic electrochemical synthesis. X-ray diffraction and Raman spectroscopy were employed to investigate lattice expansion phenomenon related to the nanoscale cerium oxide particles. The pH of reaction solution plays an important role in electrochemical synthesis of cerium oxide films …
Date: December 2003
Creator: Wang, Qi
System: The UNT Digital Library
Structure Evolution and Nano-Mechanical Behavior of Bulk Metallic Glasses and Multi-Principal Element Alloys (open access)

Structure Evolution and Nano-Mechanical Behavior of Bulk Metallic Glasses and Multi-Principal Element Alloys

Bulk metallic glasses and multi-principal element alloys represent relatively new classes of multi-component engineering materials designed for satisfying multiple functionalities simultaneously. Correlating the microstructure with mechanical behavior (at the microstructural length-scales) in these materials is key to understanding their performance. In this study, the structure evolution and nano-mechanical behavior of these two classes of materials was investigated with the objective of fundamental scientific understanding of their properties. The structure evolution, high temperature nano-mechanical behavior, and creep of two Zr-based alloys was studied: Zr41.2Ti13.8Cu12.5Ni10.0Be22 (Vitreloy1) and Zr52.5Ti5Cu17.9Ni14.6All0 (Vitreloy105). Devitrification was found to proceed via the formation of a metastable icosahedral phase with five-fold symmetry. The deformation mechanism changes from inhomogeneous or serrated flow to homogenous flow near 0.9Tg, where Tg is the glass transition temperature. The creep activation energy for Vitreloy1 and Vitreloy105 were 144 kJ/mol and 125 kJ/mol, respectively in the range of room temperature to 0.75Tg. The apparent activation energy increased drastically to 192 kJ/mol for Vitreloy1 and 215 kJ/mol for Vitreloy105 in the range of 0.9Tg to Tg, indicating a change in creep mechanism. Structure evolution in catalytic amorphous alloys, Pt57.5Cu14.7Ni5.3P22.5 and Pd43Cu27Ni10P20, was studied using 3D atom probe tomography and elemental segregation between different phases and the …
Date: May 2017
Creator: Mridha, Sanghita
System: The UNT Digital Library

Origin of Unusually Large Hall-Petch Strengthening Coefficients in High Entropy Alloys

High entropy alloys (HEAs), also referred to as complex concentrated alloys (CCAs), are a relatively new class of alloys that have gained significant attention since 2010 due to their unique balance of properties that include high strength, ductility and excellent corrosion resistance. HEAs are usually based on five or more elements alloyed in near equimolar concentrations, and exhibit simple microstructures by the formation of solid solution phases instead of complex compounds. HEAs have great potential in the design of new materials; for instance, for lightweight structural applications and elevated temperature applications. The relation between grain size and yield strength has been a topic of significant interest not only to researchers but also for industrial applications. Though some research papers have been published in this area, consensus among them is lacking, as the studies yielded different results. Al atom being a large atom causes significant lattice distortion. This work attempts to study the Hall-Petch relationship for Al0.3CoFeNi and Al0.3CoCrFeNi and to compare the data of friction stress σ0 and Hall-Petch coefficient K with published data. The base alloys for both these alloys are CoFeNi and CoCrFeNi respectively. It was observed by atom probe tomography (APT) that clustering of Al-Ni atoms in …
Date: May 2021
Creator: Jagetia, Abhinav
System: The UNT Digital Library
Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt Alloys (open access)

Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt Alloys

Monolithic composites are needed that combine low friction and wear, high mechanical hardness, and high fracture toughness. Thin films and coatings are often unable to meet this engineering challenge as they can delaminate and fracture during operation ceasing to provide beneficial properties during service life. Two material systems were synthesized by spark plasma sintering (SPS) and were studied for their ability to meet these criteria. A dual hybrid composite was fabricated and consisted of a nickel matrix for fracture toughness, TiC for hardness and graphite for solid/self‐lubrication. An in‐situ reaction during processing resulted in the formation of TiC from elemental Ti and C powders. The composition was varied to determine its effects on tribological behavior. Stellite 21, a cobalt‐chrome‐molybdenum alloy, was also produced by SPS. Stellite 21 has low stacking fault energy and a hexagonal phase which forms during sliding that both contribute to low interfacial shear and friction. Samples were investigated by x‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x‐ray spectroscopy (EDS), and electron back‐scattered diffraction (EBSD). Tribological properties were characterized by pin on disc tribometry and wear rates were determined by profilometry and abrasion testing. Solid/self‐lubrication in the TiC/C/Ni system was investigated by Raman and Auger …
Date: December 2013
Creator: Kinkenon, Douglas
System: The UNT Digital Library

Tribo-Corrosion of High Entropy Alloys

In this dissertation, tribo-corrosion behavior of several single-phase and multi-phase high entropy alloys were investigated. Tribo-corrosion of body centered cubic MoNbTaTiZr high entropy alloy in simulated physiological environment showed very low friction coefficient (~ 0.04), low wear rate (~ 10-8 mm3/Nm), body-temperature assisted passivation, and excellent biocompatibility with respect to stem cells and bone forming osteoblast cells. Tribo-corrosion resistance was evaluated for additively manufactured face centered cubic CoCrFeMnNi high entropy alloy in simulated marine environment. The additively manufactured alloy was found to be significantly better than its as-cast counterpart which was attributed to the refined microstructure and homogeneous elemental distribution. Additively manufactured CoCrFeMnNi showed lower wear rate, regenerative passivation, less wear volume loss, and nobler corrosion potential during tribo-corrosion test compared to its as-cast equivalent. Furthermore, in the elevated temperature (100 °C) tribo-corrosion environment, AlCoCrFeNi2.1 eutectic high entropy alloy showed excellent microstructural stability and pitting resistance with an order of magnitude lower wear volume loss compared to duplex stainless steel. The knowledge gained from tribo-corrosion response and stress-corrosion susceptibility of high entropy alloys was used in the development of bio-electrochemical sensors to sense implant degradation. The results obtained herewith support the promise of high entropy alloys in outperforming currently used …
Date: December 2020
Creator: Shittu, Jibril
System: The UNT Digital Library

Processing-Structure-Property Correlation for Additively Manufactured Metastable High Entropy Alloy

In the present study both fusion based - laser powder bed fusion (LPBF), and solid state - additive friction stir deposition (AFSD) additive manufacturing processes were employed for the manufacturing of a metastable high entropy alloy (HEA), Fe40Mn20Co20Cr15Si5 (CS-HEA). A processing window was developed for the LPBF and AFSD processings of CS-HEA. In case of LPBF, formation of solidification related defects such as lack of fusion pores (for energy density ≤ 31.24 J/mm3) and keyhole pores (for energy density ≥ 75 J/mm3) were observed. Variation in processing conditions affected the microstructural evolution of the metastable CS-HEA; correlation between processing conditions and microstructure of the alloy is developed in the current study. The tendency to transform and twin near stress concentration sites provided excellent tensile and fatigue properties of the material despite the presence of defects in the material. Moreover, solid state nature of AFSD process avoids formation of solidification related defects. Defect free builds of CS-HEA using AFSD resulted in higher work hardening in the material. In summary, the multi-processing techniques used for CS-HEA in the present study showcase the capability of the AM process in tailoring the microstructure, i.e., grain size and phase fractions, both of which are extremely …
Date: August 2022
Creator: Agrawal, Priyanshi
System: The UNT Digital Library
Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy (open access)

Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy

Magnesium alloys are the lightweight structural materials with high strength to weigh ratio that permits their application in fuel economy sensitive automobile industries. Among the several flavors of of Mg-alloys, precipitation hardenable Mg-rare earth (RE) based alloys have shown good potential due to their favorable creep resistance within a wide window of operating temperatures ranging from 150°C to 300°C. A key aspect of Mg-RE alloys is the presence of precipitate phases that leads to strengthening of such alloys. Several notable works, in literature, have been done to examine the formation of such precipitate phases. However, there are very few studies that evaluated the effect stress induced deformation on the precipitation in Mg-RE alloys. Therefore, the objective of this work is to examine influence of deformation on the precipitation of Mg-Nd based alloys. To address this problem, precipitation in two Mg-Nd based alloys, subjected to two different deformation conditions, and was examined via transmission electron microscopy (TEM) and atom probe tomography (APT). In first deformation condition, Md-2.6wt%Nd alloy was subjected to creep deformation (90MPa / 177ºC) to failure. Effect of stress-induced deformation was examined by comparing and contrasting with precipitation in non-creep tested specimens subjected to isothermal annealing (at 177ºC). In …
Date: December 2013
Creator: Dendge, Nilesh Bajirao
System: The UNT Digital Library
Thermomechanical Processing, Additive Manufacturing and Alloy Design of High Strength Mg Alloys (open access)

Thermomechanical Processing, Additive Manufacturing and Alloy Design of High Strength Mg Alloys

The recent emphasis on magnesium alloys can be appreciated by following the research push from several agencies, universities and editorial efforts. With a density equal to two-thirds of Al and one-thirds of steel, Mg provides the best opportunity for lightweighting of metallic components. However, one key bottleneck restricting its insertion into industrial applications is low strength values. In this respect, Mg-Y-Nd alloys have been promising due to their ability to form strengthening precipitates on the prismatic plane. However, if the strength is compared to Al alloys, these alloys are not attractive. The primary reason for low structural performance in Mg is related to low alloying and microstructural efficiency. In this dissertation, these terminologies are discussed in detail. A simple calculation showed that the microstructural efficiency in Mg-4Y-3Nd alloy is 30% of its maximum potential. Guided by the definitions of alloying and microstructural efficiency, the two prime objectives of this thesis were to: (i) to use thermomechanical processing routes to tailor the microstructure and achieve high strength in an Mg-4Y-3Nd alloy, and (ii) optimize the alloy chemistry of the Mg-rare earth alloy and design a novel rare—earth free Mg alloy by Calphad approach to achieve a strength of 500 MPa. Experimental, …
Date: May 2016
Creator: Palanivel, Sivanesh
System: The UNT Digital Library
Microstructure for Enhanced Plasticity and Toughness (open access)

Microstructure for Enhanced Plasticity and Toughness

Magnesium is the lightest metal with a very high specific strength. However, its practical applicability is limited by its toughness and reliability. Mg, being HCP has low ductility. This makes the improvement of toughness a grand challenge in Mg alloys. Friction stir processing (FSP) is a thermomechanical technique used to effect microstructural modification. Here, FSP was utilized to affect the toughness of WE43 sheets through microstructural modification. Room temperature Kahn-type tests were conducted to measure the toughness of WE43 sheets. Microscopic techniques (SEM, TEM) was utilized to study the effect of various microstructural factors like grain size, texture, constituent particles, precipitates on crack initiation and propagation. Tensile properties were evaluated by mini-tensile tests. Crack growth in WE43 sheets was also affected by mechanics and digital image correlation (DIC) was utilized to study the plastic zone size. The underlying mechanisms affecting toughness of these sheets were understood which will help in formulating ways in improving it. WE43 nanocomposites were fabricated via FSP. Uniform distribution of reinforcements was obtained in the composites. Improved mechanical properties like that of enhanced strength, increased hardness and stiffness were obtained. But contrary to other metal matrix composites which show reduction in ductility with incorporation of ceramic …
Date: August 2016
Creator: Das, Shamiparna
System: The UNT Digital Library
Laser Surface Treatment of Amorphous Metals (open access)

Laser Surface Treatment of Amorphous Metals

Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic …
Date: May 2014
Creator: Katakam, Shravana K.
System: The UNT Digital Library
Evolution of Precipitates and Their Influence on the Mechanical Properties of β-Titanium Alloys (open access)

Evolution of Precipitates and Their Influence on the Mechanical Properties of β-Titanium Alloys

Over the last few decades, body-centered-cubic (bcc) beta (β) titanium alloys have largely been exploited as structural alloys owing to the richness in their microstructural features. These features, which lead to a unique combination of high specific strength and ductility, excellent hardenability, good fatigue performance, and corrosion resistance, make these alloys viable candidates for many applications, including aerospace, automobile, and orthopedic implants. The mechanical properties of these alloys strongly depend on the various phases present; which can be controlled by thermomechanical treatments and/or alloy design. The two most important and studied phases are the metastable ω phase and the stable α phase. The present study focuses on the microstructural evolution and the mechanical behavior of these two phases in a model β-Ti alloy, binary Ti-12wt. %Mo alloy, and a commercial β-Ti alloy, β-21S. Microstructures containing athermal and isothermal ω phases in the binary Ti-12wt. %Mo alloy are obtained under specific accurate temperature controlled heat treatments. The formation and the evolution of the ω-phase based microstructures are investigated in detail via various characterization techniques such as SEM, TEM, and 3D atom probe tomography. The mechanical behavior was investigated via quasi-static tensile loading; at room and elevated temperatures. The effect of β …
Date: August 2017
Creator: Mantri, Srinivas Aditya
System: The UNT Digital Library

Investigation of Porous Ceramic Structure by Freeze-Casting

The design and fabrication of porous ceramic materials with anisotropic properties has, in recent years, gained popularity due to their potential application in various areas that include medical, energy, defense, space, and aerospace. Freeze-casting is an effective, low-cost, and safe method as a wet shaping technique to create these structures. To control the morphology of these materials, many critical factors were found to play an important role. In this dissertation, the processing parameters of the magnetic field-assisted freeze-casting method were optimized with a focus on comparing the structure obtained using vertical and horizontal magnetic fields and understanding the mechanisms that occur under different freezing modes. More specifically, this processing method was used to produce Al2O3 and B4C porous ceramics materials with unidirectionally-aligned pore channels. The effect of the vertical and horizontal magnetic field strength and direction, concentration of magnetic material (Fe3O4), cooling rate, and freezing time were examined. The resulting ceramics with highly aligned pore channels were infiltrated with molten metal to create metal matrix composites. The mechanical properties of these structures were measured and were subsequently correlated to their morphology and composition.
Date: May 2021
Creator: Bakkar, Said Adnan
System: The UNT Digital Library
Surface Degradation Behavior of Bulk Metallic Glasses and High Entropy Alloys (open access)

Surface Degradation Behavior of Bulk Metallic Glasses and High Entropy Alloys

In this study, the surface degradation behavior was studied for typical examples from bulk metallic glasses (BMGs), metallic glass composites (MGCs) and high entropy alloys (HEAs) alloy systems that are of scientific and commercial interest. The corrosion and wear behavior of two Zr-based bulk metallic glasses, Zr41.2Cu12.5Ni10Ti13.8Be22.5 and Zr57Cu15.4Ni12.6Al10Nb5, were evaluated in as-cast and thermally relaxed states. Significant improvement in corrosion rate, wear behavior, and friction coefficient was seen for both the alloys after thermal relaxation. Fully amorphous structure was retained with thermal relaxation below the glass transition temperature. This improvement in surface properties was explained by annihilation of free volume, the atomic scale defects in amorphous metals resulting from kinetic freezing. Recently developed MGCs, with in situ crystalline ductile phase, demonstrate a combination of mechanical properties and fracture behavior unseen in known structural metals. The composites showed higher wear rates but lower coefficient of friction compared to monolithic amorphous glasses. No tribolayer formation was seen for the composites in sharp contrast to that of the monolithic metallic glasses. Corrosion was evaluated by open circuit potential (OCP) analysis and potentiodynamic polarization. Site-specific corrosion behavior was studied by scanning vibration electrode technique (SVET) to identify formation of galvanic couples. Scanning kelvin …
Date: December 2017
Creator: Ayyagari, Venkata A
System: The UNT Digital Library

Wear, Friction and High Shear Strain Deformation of Metallic Glasses

In this work, wear and scratch behavior of four different bulk metallic glasses (BMGs) namely Zr41.2Cu12.5Ni10Ti13.8Be22.5 (LM 1), Zr57Cu15.4Ni12.6Al10Nb5 (LM 106), Ni60Pd20P17B3 (Ni-BMG), and Pt57.5Cu14.7Ni5.3P22.5 (Pt-BMG) were compared. Shear band formation on the edges of the scratch groove with spallation was found to be the primary failure mechanism in progressive scratch tests. The wear behavior and the scratch response of model binary Ni-P metallic glasses was systematically studied as a function of composition, with amorphous alloy formation over the narrow range of 10 at% to 20 at% phosphorus. Pulsed current electrodeposition was used to obtain these binary amorphous alloys, which offers a facile and versatile alternative to conventional melt quenching route. The electrodeposited metallic glasses (EMGs) showed hardness values in the range of 6.6-7.4 GPa, modulus in the range of 155-163 GPa, and friction coefficient around 0.50. Among the studied alloys, electrodeposited Ni80P20 showed the lowest wear rate. The wear mechanism was determined to be extensive plastic deformation along with mild ploughing, micro tears, and formation of discontinuous lubricious oxide patches. The effect of phosphorus content on the structure, mechanical properties, and the tribological response was systematically investigated for biocompatible Co-P metallic glasses. With increase in phosphorus content, there was …
Date: May 2022
Creator: Pole, Mayur
System: The UNT Digital Library

Tuning of Microstructure and Mechanical Properties in Additively Manufactured Metastable Beta Titanium Alloys

The results from this study, on a few commercial and model metastable beta titanium alloys, indicate that the growth restriction factor (GRF) model fails to interpret the grain growth behavior in the additively manufactured alloys. In lieu of this, an approach based on the classical nucleation theory of solidification incorporating the freezing range has been proposed for the first time to rationalize the experimental observations. Beta titanium alloys with a larger solidification range (liquidus minus solidus temperature) exhibited a more equiaxed grain morphology, while those with smaller solidification ranges exhibited columnar grains. Subsequently, the printability of two candidate beta titanium alloys containing eutectoid elements (Fe) that are prone to beta fleck in conventional casting, i.e., Ti-1Al-8V-5Fe (wt%) or Ti-185, and Ti-10V-2Fe-3Al (wt%) or Ti-10-2-3, is further investigated via two different AM processing routes. These alloys are used for high-strength applications in the aerospace industry, such as landing gears and fasteners. The Laser Engineered Net Shaping and Selective Laser Melting (the two AM techniques) results show that locally higher solidification rates in AM can prevent the problem of beta fleck and potentially produce β-titanium alloys with significantly enhanced mechanical properties over conventionally cast/forged counterparts. Further, the detailed investigation of microstructure-mechanical property …
Date: May 2022
Creator: Nartu, Mohan Sai Kiran Kumar Yadav
System: The UNT Digital Library
Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System (open access)

Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy
Date: August 2010
Creator: Hetherly, Jeffery
System: The UNT Digital Library
Synthesis and characterization of crystalline assembly of poly Nisopropylacry-lamide)-co-acrylic acid nanoparticles. (open access)

Synthesis and characterization of crystalline assembly of poly Nisopropylacry-lamide)-co-acrylic acid nanoparticles.

In this study, crystalline poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) nanoparticle network in organic solvents was obtained by self assembling precursor particles in acetone/epichlorohydrin mixture at room temperature followed by inter-sphere crosslinking at ~98 °C. The crystals thus formed can endure solvent exchanges or large distortions under a temporary compressing force with the reoccurrence of crystalline structures. In acetone, the crystals were stable, independent of temperature, while in water crystals could change their colors upon heating or changing pH values. By passing a focused white light beam through the crystals, different colors were displayed at different observation angles, indicating typical Bragg diffraction. Shear moduli of the gel nanoparticle crystals were measured in the linear stress-yield ranges for the same gel crystals in both acetone and water. Syntheses of particles of different sizes and the relationship between particle size and the color of the gel nanoparticle networks at a constant solid content were also presented. Temperature- and pH- sensitive crystalline PNIPAm-co-AAc hydrogel was prepared using osmosis crosslinking method. Not only the typical Bragg diffraction phenomenon was observed for the hydrogel but also apparent temperature- and pH- sensitive properties were performed. The phase behavior of PNIPAm nanoparticles dispersed in water was also investigated using a …
Date: December 2004
Creator: Zhou, Bo
System: The UNT Digital Library

Electrochemical Behavior of Catalytic Metallic Glasses

Metallic Glasses are multi-component alloys with disordered atomic structures and unique and attractive properties such as ultra-high strength, soft magnetism, and excellent corrosion/wear resistance. In addition, they may be thermoplastically processed in the supercooled liquid region to desired shapes across multiple length-scales. Recently developed metallic glasses based on noble metals (such as Pt and Pd) are highly active in catalytic reactions such as hydrogen oxidation, oxygen reduction, and degradation of organic chemicals for environmental remediation. However, there is a limited understanding of the underlying electrochemical mechanisms and surface characteristics of catalytically active metallic glasses. Here, we demonstrate the influence of alloy chemistry and the associated electronic structure on the activity of a systematic series of Pt42.5−xPdxCu27Ni9.5P21 bulk metallic glasses (BMGs) with x = 0 to 42.5 at%. The activity and electrochemically active surface area as a function of composition are in the form of volcano plots, with a peak around an equal proportion of Pt and Pd. These amorphous alloys showed more than two times the hydrogen oxidation reactivity compared to pure Pt. This high activity was attributed to their lower electron work function and higher binding energy of Pt core level that reduced charge-transfer resistance and improved electrocatalytic activity …
Date: July 2023
Creator: Mahajan, Chaitanya
System: The UNT Digital Library
An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and  Ti-Sb (open access)

An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and Ti-Sb

The current study focuses on phase stability and evolution in the titanium-zinc titanium-copper and titanium-antimony systems. The study utilized the Laser Engineering Net Shaping (LENS™) processing technique to deposit compositionally graded samples of three binary system in order to allow the assessment of phase stability and evolution as a function of composition and temperature the material is subjected to. Through LENS™ processing it was possible to create graded samples from Ti-xSb (up to 13wt%) and Ti-xCu (up to 16wt%). The LENS™ deposited gradient were solutionized, and step quenched to specific aging temperature, and the resulting microstructures and phase were characterized utilizing XRD, EDS, SEM, FIB and TEM. The Ti-Zn system proved incapable of being LENS™ deposited due to the low vaporization temperature of Zn; however, a novel processing approach was developed to drip liquid Zn onto Ti powder at temperatures above β transus temperature of Ti (882 ◦C) and below the vaporization temperature of Zn (907 ◦C). The product of this processing technique was characterized in a similar way as the graded LENS™ depositions. From measurements performed on Ti-Sb it seems that Sb could be a potential α stabilizer in Ti due to the presence of a mostly homogeneous α …
Date: May 2015
Creator: Brice, David
System: The UNT Digital Library