Degree Discipline

Linear, Nonlinear Optical and Transport Properties of Quantum Wells Composed of Short Period Strained InAs/GaAs Superlattices (open access)

Linear, Nonlinear Optical and Transport Properties of Quantum Wells Composed of Short Period Strained InAs/GaAs Superlattices

In this work, ordered all-binary short-period strained InAs/GaAs superlattice quantum wells were studied as an alternative to strained ternary alloy InGaAs/GaAs quantum wells. InGaAs quantum wells QWs have been of great interest in recent years due to the great potential applications of these materials in future generations of electronic and optoelectronic devices. The all binary structures are expected to have all the advantages of their ternary counterparts, plus several additional benefits related to growth, to the elimination of alloy disorder scattering and to the presence of a higher average indium content.
Date: December 1993
Creator: Huang, Xuren
System: The UNT Digital Library
An Experimental Study of Collision Broadening of some Excited Rotational States of the Bending Vibration of Methyl Cyanide (open access)

An Experimental Study of Collision Broadening of some Excited Rotational States of the Bending Vibration of Methyl Cyanide

A double modulation microwave spectrometer is used to evaluate the linewidth parameters for some excited rotational components in the bending vibration v_8 of 13CH3 13C 15N and 13CH3C15N isotopomers of methyl cyanide. The linewidth parameters for self-broadening of the ΔJ=2←1 rotational components for the ground v_8 , 1v_8, and the 2v_8 vibrations were determined over a pressure range of 1 to 13 mtorr and at a temperature of 300 K. The double modulation technique is used to explore the high eighth derivative of the line shape profile of the spectral line. This technique proved to give good signal-to-noise ratios and enabled the recovery of weak signals. An experimental method is developed to correct for source modulation broadening. The tests of the ratios of the two inner peak's separation of the eighth derivative of the line showed that they were up to 95% similar to those for a Lorentzian line shape function. The line shapes were assumed to be Lorentzian for the theoretical analysis of the derivative profiles and comparisons were made between experiment and theory on this basis. Dipole moments for vibrationally excited states were calculated from linewidth parameters and show systematic decrease with the increase of excitation. Impact parameters …
Date: May 1993
Creator: Hajsaleh, Jamal Y. (Jamal Yousef)
System: The UNT Digital Library
Z1 Dependence of Ion-Induced Electron Emission (open access)

Z1 Dependence of Ion-Induced Electron Emission

Knowledge of the atomic number (Zt) dependence of ion-induced electron emission yields (Y) can be the basis for a general understanding of ion-atom interaction phenomena and, in particular, for the design of Zrsensitive detectors that could be useful, for example, in the separation of isobars in accelerator mass spectrometry. The Zx dependence of ion-induced electron emission yields has been investigated using heavy ions of identical velocity (v = 2 v0, with v0 as the Bohr velocity) incident in a normal direction on sputter-cleaned carbon foils. Yields measured in this work plotted as a function of the ion's atomic number reveal an oscillatory behavior with pronounced maxima and minima. This nonmonotonic dependence of the yield on Zx will be discussed in the light of existing theories.
Date: December 1993
Creator: Arrale, Abdikarim M. (Abdikarim Mohamed)
System: The UNT Digital Library