Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets (open access)

Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets

Protons with energies ranging from 0.4 to 2.0 MeV were used to measure K-shell vacancy production cross sections (oVK) for N_2, CH_4, C_2H_4, C_2H_6, and CO_2 gas targets under single collision conditions. An electron-ion time-of-flight coincidence technique was used to determind the ration of the K-K electron capture cross section, OECK, to the K-vacancy production cross section, oVK. These ratios were then combined with the measured values of oVK to extract the K-K electron capture cross sections. Measurements were also made for protons of the same energy range but with regard to L-shell vacancy production and L-K electron capture for Ar targets. In addition, K-K electron capture cross sections were measured for 1.0 to 2.0 Mev 42He^_ ions on CH_4.
Date: May 1986
Creator: Toten, Arvel D.
System: The UNT Digital Library
Measurement of the Rate Coefficients for the Bimolecular and Termolecular Charge Transfer Reactions of He₂⁺ with Ne, Ar, N₂, CO, CO₂, and CH₄ (open access)

Measurement of the Rate Coefficients for the Bimolecular and Termolecular Charge Transfer Reactions of He₂⁺ with Ne, Ar, N₂, CO, CO₂, and CH₄

The problem with which this investigation is concerned is that of measuring the rate coefficients for termolecular charge transfer reactions of He2+ in atmospheric pressure afterglows with the minority reacting species. Of particular interest was the discovery that the presence of a third body can change an improbable charge transfer reaction involving He+2 into a very probable one, as in the case of the reaction with argon. For example, in Tables II and II it was shown that less than a 300 torr pressure of helium was required to double the effective rate of reaction of argon with He2+ while over 3000 torr was required for CH4. The sensitivity of the method has been sufficient to detect termolecular components as small as 2 x 10-30 cm /sec and values were found to range widely from 2 x 10 for Ne to 67 x 10-30 cm6/sec for CO2. The size of these termolecular rates not only served to explain specific anomalous efficiencies of the charge transfer process observed in atmospheric pressure lasers but also suggested the general importance of three-body ion-molecule reactions in higher pressure plasmas.
Date: May 1977
Creator: Lee, Francis Wha-Pyo
System: The UNT Digital Library
Parametric Studies of Picosecond Laser-Induced Breakdown in Fused Quartz and NaCl (open access)

Parametric Studies of Picosecond Laser-Induced Breakdown in Fused Quartz and NaCl

Bulk laser-induced breakdown and self-focusing in single samples of fused quartz and NaCl were examined using picosecond optical pulses at 1.0 ym and 0.5 ym. The results of three separate but related experiments are reported. First the nonlinear index of refraction, n2, of each of the test materials is measured near the respective damage thresholds of the samples. The values of 1*2 were determined by detecting beam distortions in the far field, transmitted laser beam profile caused by the irradiance dependent index of refraction. The experimental traces were compared to theoretical beam profiles generated by a nonlinear propagation code and n2 was extracted from the resulting fits.
Date: December 1984
Creator: Williams, William Ely
System: The UNT Digital Library
Room Temperature Gold-Vacuum-Gold Tunneling Experiments (open access)

Room Temperature Gold-Vacuum-Gold Tunneling Experiments

An experiment has been completed which demonstrated quantum mechanical tunneling of electrons between two gold electrodes separated in vacuum. The tunneling current between the gold electrodes has been measured, for fixed voltages of 0.1 and 0.01 volts, as the electrode spacing was varied from a distance of approximately 2.0 nm down to a point where the electrodes touched. Current-voltage characteristics for fixed electrode spacing in the direct tunneling region have also been measured. Numerical calculations of the tunneling current based on the free-electron model of the electrodes and the barrier, an image-potential reduced barrier, and a WKB approximation for the tunneling probability have been performed and compared with Simmons' theory and with the experimental results. Within experimental error the results indicate that an image potential reduced barrier with the modifications suggested by Lang and Kohn gives a close approximation to the true barrier for metal-vacuum-metal tunneling. For the first time, the work function of the electrodes in a tunneling experiment has been deduced from experimental parameters independent of the tunneling device.
Date: August 1978
Creator: Teague, E. C. (Edgar Clayton), 1941-
System: The UNT Digital Library
A Study of Solar Cosmic Ray Flare Effects (open access)

A Study of Solar Cosmic Ray Flare Effects

The purpose of this study is to determine the characteristics of the solar cosmic ray flux. This report describes the design and construction of a cosmic ray detector system used in this study and describes the analysis of the data obtained from these systems.
Date: May 1971
Creator: Keath, Edwin P. (Edwin Paul), 1938-
System: The UNT Digital Library
Picosecond Measurement of Nonlinear Diffusion and Recombination Processes in Germanium (open access)

Picosecond Measurement of Nonlinear Diffusion and Recombination Processes in Germanium

A variation of the excite-and-probe technique is used to measure the picosecond evolution of laser-induced transient gratings that are produced in germanium by the direct absorption of 40 psec optical pulses at 1.06-μm. Grating lifetimes are determined for free carrier densities between 10¹⁸ cm⁻³ and 10²¹ cm⁻³ . For carrier densities less than 10¹⁹ cm⁻³ , a linear diffusion-recombination model for the grating provides a good fit to the experimental data and allows the extraction of the diffusion coefficient and an estimation of the linear recombination lifetime. Above carrier densities of approximately 10²⁰ cm⁻³ , the density dependence of the diffusion coefficient and nonlinear recombination processes must be considered. Numerical solutions to the resulting nonlinear partial differential equation are obtained that allow extraction of information concerning the high density diffusion coefficient and the nonlinear recombination rates.
Date: May 1981
Creator: Moss, Steven Charles
System: The UNT Digital Library