Analysis of the Cytochrome P450 and UDP-Glucuronosyltransferase Families and Vitamin D3- Supplementation in Anoxia Survival in Caenorhabditis elegans

Alteration in diet and knockdown of detoxification genes impacts the response of C. elegans to oxygen deprivation stress. I hypothesized that feeding worms a vitamin D3-supplementation diet would result in differential oxygen deprivation stress response. We used a combination of wet lab and transcriptomics approach to investigate the effect of a vitamin-D3 supplemented diet on the global gene expression changes and the anoxia response phenotype of C. elegans (Chapter 2). C. elegans genome consists of 143 detoxification genes (cyp and ugt). The presence of a significant number of genes in these detoxification families was a challenge with identifying and selecting specific cyp and ugt genes for detailed analysis. Our goal was to understand the evolution, phylogenetic, and expression of the detoxification enzymes CYPs and UGTs in C. elegans (Chapter 3). We undertook a phylogenetic and bioinformatics approach to analyze the C. elegans, detoxification family. Phylogenetic analysis provided insight into the association of the human and C. elegans xenobiotic/endobiotic detoxification system. Protein coding genes in C. elegans have been predicted to be human orthologs. The results of this work demonstrate the role of C. elegans in the identification and characterization of vitamin D3 induced alterations in gene expression profile and anoxia …
Date: December 2020
Creator: Agarwal, Sujata
System: The UNT Digital Library
Role of 5.8S rRNA in Zebrafish and Human Blood Coagulation (open access)

Role of 5.8S rRNA in Zebrafish and Human Blood Coagulation

Hemolytic disorders are characterized by hemolysis and are prone to thrombosis. Previously, it has been shown that the RNA released from damaged blood cells activates clotting. However, the nature of RNA released from hemolysis is still elusive. We found that after hemolysis, the red blood cells from both zebrafish and humans release 5.8S rRNA. This RNA activated coagulation in zebrafish and human plasmas. Using both natural and synthetic 5.8S rRNA and its synthetic truncated fragments, we found that the 3'-end 26 nucleotide-long RNA (3'-26 RNA) and its stem-loop secondary structure were necessary and sufficient for clotting activity. Corn trypsin inhibitor (CTI), a coagulation factor XII (FXII) inhibitor blocked 3'-26 RNA-mediated coagulation activation of both zebrafish and human plasma. CTI also inhibited zebrafish coagulation in vivo. 5.8S rRNA monoclonal antibody inhibited both 5.8S rRNA- and 3'-26 RNA-mediated zebrafish coagulation activity. Both 5.8S rRNA and 3'-26 RNA activates normal human plasma but did not activate FXII-deficient human plasma. Taken together, these results suggested that the activation of zebrafish plasma is via FXII-like protein. Since zebrafish has no FXII and hepatocyte growth factor activator (Hgfac) has sequence similarities to FXII, we knocked down the hgfac in adult zebrafish. We found that plasma from …
Date: December 2020
Creator: Alharbi, Abdulmajeed Haya M.
System: The UNT Digital Library
Stability of Myosin Subfragment-2 Modulates the Force Produced by Acto-Myosin Interaction of Striated Muscle (open access)

Stability of Myosin Subfragment-2 Modulates the Force Produced by Acto-Myosin Interaction of Striated Muscle

Myosin subfragment-2 (S2) is a coiled coil linker between myosin subfragment-1 and light meromyosin (LMM). This dissertation examines whether the myosin S2 coiled coil could regulate the amount of myosin S1 heads available to bind actin thin filaments by modulating the stability of its coiled coil. A stable myosin S2 coiled coil would have less active myosin S1 heads compared to a more flexible myosin S2 coiled coil, thus causing increased force production through acto-myosin interaction. The stability of the myosin S2 coiled coil was modulated by the binding of a natural myosin S2 binding protein, myosin binding protein C (MyBPC), and synthetic myosin S2 binding proteins, stabilizer and destabilizer peptide, to myosin S2. Competitive enzyme linked immunosorbent assay (cELISA) experiments revealed the cross specificity and high binding affinity of the synthetic peptides to the myosin S2 of human cardiac and rabbit skeletal origins. Gravitational force spectroscopy (GFS) was performed to test the stability of myosin S2 coiled coil in the presence of these myosin S2 binding proteins. GFS experiments demonstrated the stabilization of the myosin S2 coiled coil by the binding of MyBPC and stabilizer peptide to myosin S2, while the binding of destabilizer peptide to the same resulted …
Date: December 2017
Creator: Singh, Rohit Rajendraprasad
System: The UNT Digital Library
Compartmentalization of Jojoba Seed Lipid Metabolites (open access)

Compartmentalization of Jojoba Seed Lipid Metabolites

Seeds from the desert shrub Simmondsia chinensis (jojoba) are one of the only known natural plant sources to store a majority of its oil in the form of liquid wax esters (WE) instead of triacylglycerols (TAGs) and these oils account for ~55% of the seed weight. Jojoba oil is highly valued as cosmetic additives and mechanical lubricants, yet despite its value much is still unknown about its neutral lipid biosynthetic pathways and lipid droplet packaging machinery. Here, we have used a multi-"omics" approach to study how spatial differences in lipid metabolites, gene expression, and lipid droplet proteins influence the synthesis and storage of jojoba lipids. Through these studies mass spectrometry analyses revealed that WEs are compartmentalized primarily in the cotyledonary tissues, whereas TAGs are, surprisingly, localized to the embryonic axis tissues. To study the differences in gene expression between these two tissues, a de novo transcriptome was assembled from high throughput RNAseq data. Differential gene expression analysis revealed that the Jojoba Wax Synthase, which catalyzes the formation of wax esters, and the Diacylglycerol O-Acyltransferase1, which catalyzes the final acylation of triacylglycerol synthesis, were differentially expressed in the cotyledons and embryonic axis tissues, respectively. Furthermore, through proteomic analysis of lipid droplet …
Date: December 2018
Creator: Sturtevant, Drew
System: The UNT Digital Library

Identification and Characterization of Two Putative Sulfate Transporters Essential for Symbiotic Nitrogen Fixation in Medicago truncatula

The process of symbiotic nitrogen fixation (SNF) in legume root nodules requires the channeling and exchange of nutrients within and between the host plant cells and between the plant cells and their resident rhizobia. Using a forward genetics approach in the Medicago truncatula Tnt1 mutant population followed by whole genome sequencing, two putative sulfate transporter genes, MtSULTR3;5 and MtSULTR3;4b, were identified. To support the hypothesis that the defective putative sulfate transporter genes were the causative mutation for the mutants' phenotypes, the M. truncatula Tnt1 population was successfully reverse screened to find other mutant alleles of the genes. The F2 progeny of mutants backcrossed with wildtype R108 demonstrated co-segregation of mutant phenotypes with the mutant alleles confirming that the mutated mtsultr3;5 and mtsultr3;4b genes were the cause of defective SNF in the mutant lines mutated in the respective genes. This finding was further established for mtsultr3;4b by successful functional complementation of a mutant line defective in the gene with the wildtype copy of MtSULTR3;4b. A MtSULTR3;4b promoter-GUS expression experiment indicated MtSULTR3;4b expression in the vasculature and infected and uninfected plant cells of root nodules. MtSULTR3;4b was found to localize to the autophagosome membrane when expressed in Nicotiana benthamiana. A transcriptomics study …
Date: December 2022
Creator: Pradhan, Rajashree
System: The UNT Digital Library

Fatty Acid Amide Hydrolases in Upland Cotton (Gossypium hirsutum L.) and the Legume Model Medicago truncatula

Fatty acid amide hydrolase (FAAH) is a widely conserved amidase in eukaryotes, best known for inactivating the signal of N-acylethanolamine (NAE) lipid mediators. In the plant Arabidopsis thaliana, FAAH-mediated hydrolysis of NAEs has been associated with numerous biological processes. Recently, the phylogenetic distribution of FAAH into two major branches (group I and II FAAHs) across angiosperms outside of Arabidopsis (and in other Brassicaceae), suggests a previously unrecognized complexity of this enzyme. Although A. thaliana has long been used to assess biological questions for plants, in this case it will fall short in understanding the significance of multiple FAAHs in other plant systems. Thus, in this study, I examined the role (s) of six FAAH isoforms in upland cotton (Gossypium hirsutum L.) and two FAAHs in the legume Medicago truncatula.
Date: December 2023
Creator: Arias Gaguancela, Omar Paul
System: The UNT Digital Library