144 Matching Results

Results open in a new window/tab. Unexpected Results? Search the Catalog Instead.

Batch sorption results for neptunium transport through Yucca Mountain tuffs. Yucca Mountain Site Characterization Program milestone 3349 (open access)

Batch sorption results for neptunium transport through Yucca Mountain tuffs. Yucca Mountain Site Characterization Program milestone 3349

We studied the sorption of neptunium onto tuffs characteristic of the proposed nuclear waste repository at Yucca Mountain, Nevada. The neptunium was in the Np(V) oxidation state under oxidizing conditions in groundwaters from two wells located close to the repository site (J-13 and UE-25 p No.1). We used devitrified, vitric, zeolitic (with emphasis on clinoptilolite-rich samples), and calcite-rich tuffs characteristic of the geology of the site. Neptunium sorbed well onto calcite and calcite-rich tuffs, indicating that a significant amount of neptunium retardation can be expected under fractured-flow scenarios because of calcite coating of the fractures. Neptunium sorption onto clinoptilolite-rich zeolitic tuffs in J-13 well water (pH from 7 to 8.5) was moderate, increased with decreasing pH, and correlated to surface area and amount of clinoptilolite. Neptunium sorbed poorly onto zeolitic tuffs from UE-25 p No.1 groundwater (pH from 7 to 9) and onto devitrified and vitric tuffs from J-13 and UE-25 p No.1 waters (pH from 7 to 9). Iron oxides appeared to be passivated in tuffs, not seeming to contribute to the observed neptunium sorption, even though neptunium sorption onto synthetic iron oxide is significant.
Date: September 1, 1996
Creator: Triay, I. R.; Cotter, C. R.; Huddleston, M. H. & Leonard, D. E.
Object Type: Report
System: The UNT Digital Library
Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: Neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338 (open access)

Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: Neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338

We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do not sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10{sup -7} to 3 X 10{sup -5} M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10{sup -8} to 1 X 10{sup -4} M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water …
Date: August 1, 1996
Creator: Triay, I.R.; Cotter, C.R.; Kraus, S.M. & Huddleston, M.H.
Object Type: Report
System: The UNT Digital Library
Water levels in the Yucca Mountain area, Nevada, 1993 (open access)

Water levels in the Yucca Mountain area, Nevada, 1993

Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1993. Seventeen wells were monitored periodically, generally on a monthly basis, and 11 wells representing 18 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,034 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1993. Water levels were an average of about 0.04 meter lower than 1992 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data.
Date: July 1, 1996
Creator: Tucci, P.; Goemaat, R.L. & Burkhardt, D.J.
Object Type: Report
System: The UNT Digital Library
Water levels in the Yucca Mountain area, Nevada, 1994 (open access)

Water levels in the Yucca Mountain area, Nevada, 1994

Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1994. Twelve wells representing 13 intervals were monitored periodically, generally on a monthly basis, 6 wells representing 10 intervals were monitored hourly, and 10 wells representing 13 intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks, except one, that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and pressure transducers. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1994. The mean-annual water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1994. Water levels were only an average of about 0.01 meters lower than 1993 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data.
Date: December 31, 1996
Creator: Graves, R. P.; Tucci, P. & Goemaat, R. L.
Object Type: Report
System: The UNT Digital Library
PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR YUCCA MOUNTAIN, NEVADA (open access)

PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR YUCCA MOUNTAIN, NEVADA

None
Date: June 1, 1996
Creator: KEVIN J. COPPERSMITH, ROSEANNE C. PERMAN
Object Type: Report
System: The UNT Digital Library
Water levels in the Yucca Mountain area, Nevada, 1990--91 (open access)

Water levels in the Yucca Mountain area, Nevada, 1990--91

Water levels were monitored in 27 wells in the Yucca Mountain area, Nevada during 1990--91. Twelve wells were monitored periodically, generally on a monthly basis, and 15 wells representing 24 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors levels in paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,035 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1990--91. All data were acquired in accordance with a quality-assurance program to support the reliability of the data.
Date: July 1, 1996
Creator: Tucci, P.; O`Brien, G.M. & Burkhardt, D.J.
Object Type: Report
System: The UNT Digital Library
Geology of the USW SD-7 drill hole Yucca Mountain, Nevada (open access)

Geology of the USW SD-7 drill hole Yucca Mountain, Nevada

The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into the Tram Tuff, which underlies the Prow …
Date: September 1, 1996
Creator: Rautman, C.A. & Engstrom, D.A.
Object Type: Report
System: The UNT Digital Library
Geology of the USW SD-12 drill hole Yucca Mountain, Nevada (open access)

Geology of the USW SD-12 drill hole Yucca Mountain, Nevada

Drill hole USW SD-12 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the {open_quotes}Systematic Drilling Program,{close_quotes} as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-12 drill hole is located in the central part of the potential repository area, immediately to the west of the Main Test Level drift of the Exploratory Studies Facility and slightly south of midway between the North Ramp and planned South Ramp declines. Drill hole USW SD-12 is 2166.3 ft (660.26 m) deep, and the core recovered essentially complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. A virtually complete section of the Calico Hills Formation was also recovered, as was core from the entire Prow Pass Tuff formation of the Crater Flat Group.
Date: November 1, 1996
Creator: Rautman, C.A. & Engstrom, D.A.
Object Type: Report
System: The UNT Digital Library
Thermodynamic data base needs for modeling studies of the Yucca Mountain project (open access)

Thermodynamic data base needs for modeling studies of the Yucca Mountain project

This document is the first in a series of documents outlining the thermodynamic data needs for performing geochemical modeling calculations in support of various waste package performance assessment activities for the Yucca Mountain Project. The documents are intended to identify and justify the critical thermodynamic data needs for the data base to be used with the models. The Thermodynamic Data Determinations task supplies data needed to resolve performance or design issues and the development of the data base will remain an iterative process as needs change or data improve. For example, data are needed to predict: (1) major ion groundwater chemistry and its evolution, (2) mineral stabilities and evolution, (3) engineered barrier near-field transport and retardation properties, (4) changes in geochemical conditions and processes, (5) solubilities, speciation and transport of waste radionuclides and (6) the dissolution of corrosion of construction and canister materials and the effect on groundwater chemistry and radionuclide solubilities and transport. The system is complex and interactive, and data need to be supplied in order to model the changes and their effect on other components of the system, e.g., temperature, pH and redox conditions (Eh). Through sensitivity and uncertainty analyses, the critical data and system parameters will …
Date: July 12, 1996
Creator: Palmer, C. E. A.; Silva, R. J. & Bucher, J. J.
Object Type: Report
System: The UNT Digital Library
Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995 (open access)

Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it.
Date: August 1, 1996
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Scenarios constructed for the effects of tectonic processes on the potential nuclear waste repository at Yucca Mountain (open access)

Scenarios constructed for the effects of tectonic processes on the potential nuclear waste repository at Yucca Mountain

A comprehensive collection of scenarios is presented that connect initiating tectonic events with radionuclide releases by logical and physically possible combinations or sequences of features, events and processes. The initiating tectonic events include both discrete faulting and distributed rock deformation developed through the repository and adjacent to it, as well as earthquake-induced ground motion and changes in tectonic stress at the site. The effects of these tectonic events include impacts on the engineered-barrier system, such as container rupture and failure of repository tunnels. These effects also include a wide range of hydrologic effects such as changes in pathways and flow rates in the unsaturated and saturated zones, changes in the water-table configuration, and in the development of perched-water systems. These scenarios are intended go guide performance-assessment analyses and to assist principal investigators in how essential field, laboratory, and calculational studies are used. This suite of scenarios will help ensure that all important aspects of the system disturbance related to a tectonic scenario are captured in numerical analyses. It also provides a record of all options considered by project analysts to provide documentation required for licensing agreement. The final portion of this report discusses issues remaining to be addressed with respect …
Date: October 1, 1996
Creator: Barr, G. E.; Borns, D. J. & Fridrich, C.
Object Type: Report
System: The UNT Digital Library
Interpretation of chemical and isotopic data from boreholes in the unsaturated zone at Yucca Mountain, Nevada (open access)

Interpretation of chemical and isotopic data from boreholes in the unsaturated zone at Yucca Mountain, Nevada

Analyses of pore water from boreholes at Yucca Mountain indicate that unsaturated-zone pore water has significantly larger concentrations of chloride and dissolved solids than the saturated-zone water or perched-water bodies. Chemical compositions are of the calcium sulfate or calcium chloride types in the Paintbrush Group (Tiva Canyon, Yucca Mountain, Pah Canyon, and bedded tuffs), and sodium carbonate or bicarbonate type water in the Calico Hills Formation. Tritium profiles from boreholes at Yucca Mountain indicate tritium-concentration inversions (larger tritium concentrations are located below the smaller tritium concentration in a vertical profile) occur in many places. These inversions indicate preferential flow through fractures. Rock-gas compositions are similar to that of atmospheric air except that carbon dioxide concentrations are generally larger than those in the air. The delta carbon-13 values of gas are fairly constant from surface to 365.8 meters, indicating little interaction between the gas CO{sub 2} and caliche in the soil. Model calculations indicate that the gas transport in the unsaturated zone at Yucca Mountain agrees well with the gas-diffusion process. Tritium-modeling results indicate that the high tritium value of about 100 tritium units in the Calico Hills Formation of UZ-16 is within limits of a piston-flow model with a water …
Date: December 31, 1996
Creator: Yang, In C.; Rattray, Gordon W. & Yu, Pei
Object Type: Report
System: The UNT Digital Library
Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995 (open access)

Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric …
Date: December 31, 1996
Creator: Luckey, Richard R.; Tucci, Patrick; Faunt, Claudia C.; Ervin, Elisabeth M.; Steinkampf, William C. & D'Agnese, Frank A.
Object Type: Report
System: The UNT Digital Library
Oxygen isotopes and trace elements in the Tiva Canyon Tuff, Yucca Mountain and vicinity, Nye County, Nevada (open access)

Oxygen isotopes and trace elements in the Tiva Canyon Tuff, Yucca Mountain and vicinity, Nye County, Nevada

Yucca Mountain is being studied as a potential site for an underground repository for high-level radioactive waste. Because Yucca Mountain is located in a resource-rich geologic setting, one aspect of the site characterization studies is an evaluation of the resource potential at Yucca Mountain. The Tiva Canyon Tuff (TCT) is a widespread felsic ash-flow sheet that is well exposed in the Yucca Mountain area. Samples of the upper part of the TCT were selected to evaluate the potential for economic mineral deposits within the Miocene volcanic section. These samples of the upper cliff and caprock subunits have been analyzed for oxygen isotopes and a large suite of elements. Oxygen isotope compositions ({delta}{sup 18}O) of the TCT are typical of felsic igneous rocks but range from 6.9 to 11.8 permil, indicating some post-depositional alteration. There is no evidence of the low {delta}{sup 18}O values (less than 6 permil) that are typical of epithermal precious-metal deposits in the region. The variation in oxygen isotope ratios is probably the result of deuteric alteration during late-stage crystallization of silica and low-temperature hydration of glassy horizons; these processes are also recorded by the chemical compositions of the rocks. However, most elemental contents in the TCT …
Date: December 31, 1996
Creator: Marshall, Brian D.; Kyser, T. Kurtis & Peterman, Zell E.
Object Type: Report
System: The UNT Digital Library
Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water years 1993--94 (open access)

Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water years 1993--94

The Yucca Mountain area is being evaluated by the US Department of Energy for its suitability to store high-level nuclear waste in a mined, underground repository. Hydrologic data are being collected by the US Geological Survey throughout a 150 Km{sup 2} study area about 15- Km northwest of Las Vegas in southern Nevada for site characterization studies. Ongoing hydrologic studies are investigating atmospheric precipitation, stream-flow, movement of water through the unsaturated zone, movement of water through the saturated zone, and paleohydrology. This study at Fortymile Wash involves some components of each of these studies. Fortymile Wash is an ephemeral stream near Yucca Mountain with tributaries draining the east side of Yucca Mountain and then forming a distributary system in the Amargosa Desert. An objective of the study is to determine the amount of recharge from Fortymile Wash to the ground-water flow system that has been proposed. Understanding the ground-water flow system is important because it is a possible mechanism for radionuclide migration from the repository to the accessible environment. An adequate understanding of the ground-water flow system is necessary for an evaluation of the safety issues involved in siting the potential repository.
Date: September 1, 1996
Creator: Savard, C.S.
Object Type: Report
System: The UNT Digital Library
Near-surface velocity modeling at Yucca Mountain using borehole and surface records from underground nuclear explosions (open access)

Near-surface velocity modeling at Yucca Mountain using borehole and surface records from underground nuclear explosions

The Department of Energy is investigating Yucca Mountain, Nevada as a potential site for commercial radioactive waste disposal in a mined geologic repository. One critical aspect of site suitability is the tectonic stability of the repository site. The levels of risk from both actual fault displacements in the repository block and ground shaking from nearby earthquakes are being examined. In particular, it is necessary to determine the expected level of ground shaking at the repository depth for large seismic sources such as nearby large earthquakes or underground nuclear explosions (UNEs). Earthquakes are expected to cause the largest ground motions at the site, however, only underground nuclear explosion data have been obtained at the repository depth level (about 350m below the ground level) to date. In this study we investigate ground motion from Nevada Test Site underground nuclear explosions recorded at Yucca Mountain to establish a compressional velocity model for the uppermost 350m of the mountain. This model is useful for prediction of repository-level ground motions for potential large nearby earthquakes.
Date: September 1, 1996
Creator: Durrani, B.A. & Walck, M.C.
Object Type: Report
System: The UNT Digital Library
Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1994 (open access)

Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1994

The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and groundwater withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1994. Data collected prior to 1994 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-94.
Date: July 1, 1996
Creator: Westenburg, C. L. & La Camera, R. J.
Object Type: Report
System: The UNT Digital Library
Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1995 (open access)

Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1995

The US Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and groundwater withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1995. Data collected prior to 1995 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented to indicate potential effects of ground-water withdrawals in support of US Department of Energy activities near Yucca Mountain. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-95. Compared with baseline periods for the seven wells, median water levels for calendar year 1995 were slightly …
Date: December 31, 1996
Creator: La Camera, R. J.; Westenburg, C. L. & Locke, G. L.
Object Type: Report
System: The UNT Digital Library
Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report (open access)

Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS …
Date: June 1, 1996
Creator: Stetzenbach, Klaus & Farnham, I.
Object Type: Report
System: The UNT Digital Library
Hydrology of modern and late Holocene lakes, Death Valley, California (open access)

Hydrology of modern and late Holocene lakes, Death Valley, California

Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the …
Date: July 1, 1996
Creator: Grasso, D.N.
Object Type: Report
System: The UNT Digital Library
Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water (open access)

Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water

The major objective of this study has been to examine the possibility of a nuclear explosion (and evaluate this event if it is possible) should 50 to 100 kg of plutonium be mixed with SiO{sub 2}, vitrified, placed within a heavy steel container, and buried in the material known as Nevada tuff. To accomplish this objective we have created a survey of the critical states or configurations of mixtures of plutonium, SiO{sub 2}, tuff, and water and examined these data to isolate those configurations that might be unstable or autocatalytic. The survey of critical data now exists and is published herein. We identify regions of criticality instability with the possibility of autocatalytic power behavior (the existence of such autocatalytic phenomena is not new). Autocatalytic power behavior is possible for a very limited range of wet systems, but this behavior is improbable. A quantitative and conservative evaluation of the fission power behavior of these autocatalytic mixtures shows that no explosion should be expected.
Date: September 1, 1996
Creator: Sanchez, R.; Myers, W.; Hayes, D. & Kimpland, R.
Object Type: Report
System: The UNT Digital Library
Assessment of industrial minerals and rocks in the controlled area (open access)

Assessment of industrial minerals and rocks in the controlled area

Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from …
Date: August 1, 1996
Creator: Castor, S. B. & Lock, D. E.
Object Type: Report
System: The UNT Digital Library
Hydrogeology of rocks penetrated by test well JF-3, Jackass Flats, Nye County, Nevada (open access)

Hydrogeology of rocks penetrated by test well JF-3, Jackass Flats, Nye County, Nevada

The U.S. Department of Energy and U.S. Geological Survey are monitoring water levels in southern Nevada and adjacent parts of California in response to concern about the potential effects of pumping ground water to support the Yucca Mountain Site-Characterization Program. Well JF-3 was drilled in the western part of Jackass Flats for monitoring water levels, for determining the likelihood of a hydraulic connection between well JF-3 and production wells J-12 and J-13, and for measuring the hydraulic properties of the Topopah Spring Tuff. The borehole for JF-3 penetrated about 480 feet of alluvium and 818 feet of underlying volcanic rock. The well was finished at a depth of 1,138 feet below land surface near the base of the Topopah Spring Tuff, which is the principal volcanic-rock aquifer in the area. The Topopah Spring Tuff at well JF-3 extends from depths of 580 feet to 1,140 feet and consists of about 10 feet of partly to moderately welded ash-flow tuff; 10 feet of vitrophyre; 440 feet of devitrified, moderately to densely welded ash-flow tuff; 80 feet of densely welded ash-flow tuff; 10 feet of vitric, nonwelded to partly welded ash-flow tuff; and 10 feet of ashfall tuff. Fractures and lithophysae are …
Date: December 31, 1996
Creator: Plume, R.W. & La Camera, R.J.
Object Type: Report
System: The UNT Digital Library
MATERIAL COMPOSITIONS AND NUMBER DENSITIES FOR NEUTRONICS CALCULATIONS (open access)

MATERIAL COMPOSITIONS AND NUMBER DENSITIES FOR NEUTRONICS CALCULATIONS

The purpose of this analysis is to calculate the number densities and isotopic weight percentages of the standard materials to be used in the neutronics (criticality and radiation shielding) evaluations by the Waste Package Development Department. The objective of this analysis is to provide material number density information which can be referenced by future neutronics design analyses, such as for those supporting the Conceptual Design Report.
Date: January 2, 1996
Creator: Thomas, D. A.
Object Type: Report
System: The UNT Digital Library