Design and Manufacture of Molding Compounds for High Reliability Microelectronics in Extreme Conditions (open access)

Design and Manufacture of Molding Compounds for High Reliability Microelectronics in Extreme Conditions

The widespread use of electronics in more avenues of consumer use is increasing. Applications range from medical instrumentation that directly can affect someone's life, down hole sensors for oil and gas, aerospace, aeronautics, and automotive electronics. The increased power density and harsh environment makes the reliability of the packaging a vital part of the reliability of the device. The increased importance of analog devices in these applications, their high voltage and high temperature resilience is resulting in challenges that have not been dealt with before. In particular packaging where insulative properties are vital use polymer resins modified by ceramic fillers. The distinct dielectric properties of the resin and the filler result in charge storage and release of the polarization currents in the composite that have had unpredictable consequences on reliability. The objective of this effort is therefore to investigate a technique that can be used to measure the polarization in filled polymer resins and evaluate reliable molding compounds. A valuable approach to measure polarization in polymers where charge release is tied to the glass transition in the polymer is referred to as thermally stimulated depolarization current (TSDC) technique. In this dissertation a new TSDC measurement system was designed and fabricated. …
Date: December 2016
Creator: Garcia, Andres
System: The UNT Digital Library