Toward Leveraging Artificial Intelligence to Support the Identification of Accessibility Challenges

The goal of this thesis is to support the automated identification of accessibility in user reviews or bug reports, to help technology professionals prioritize their handling, and, thus, to create more inclusive apps. Particularly, we propose a model that takes as input accessibility user reviews or bug reports and learns their keyword-based features to make a classification decision, for a given review, on whether it is about accessibility or not. Our empirically driven study follows a mixture of qualitative and quantitative methods. We introduced models that can accurately identify accessibility reviews and bug reports and automate detecting them. Our models can automatically classify app reviews and bug reports as accessibility-related or not so developers can easily detect accessibility issues with their products and improve them to more accessible and inclusive apps utilizing the users' input. Our goal is to create a sustainable change by including a model in the developer's software maintenance pipeline and raising awareness of existing errors that hinder the accessibility of mobile apps, which is a pressing need. In light of our findings from the Blackboard case study, Blackboard and the course material are not easily accessible to deaf students and hard of hearing. Thus, deaf students …
Date: May 2023
Creator: Aljedaani, Wajdi Mohammed R M., Sr.
System: The UNT Digital Library

Deep Learning Optimization and Acceleration

The novelty of this dissertation is the optimization and acceleration of deep neural networks aimed at real-time predictions with minimal energy consumption. It consists of cross-layer optimization, output directed dynamic quantization, and opportunistic near-data computation for deep neural network acceleration. On two datasets (CIFAR-10 and CIFAR-100), the proposed deep neural network optimization and acceleration frameworks are tested using a variety of Convolutional neural networks (e.g., LeNet-5, VGG-16, GoogLeNet, DenseNet, ResNet). Experimental results are promising when compared to other state-of-the-art deep neural network acceleration efforts in the literature.
Date: August 2022
Creator: Jiang, Beilei
System: The UNT Digital Library